Skip to main content
Log in

Monotone Chemical Reaction Networks

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

We analyze certain chemical reaction networks and show that every solution converges to some steady state. The reaction kinetics are assumed to be monotone but otherwise arbitrary. When diffusion effects are taken into account, the conclusions remain unchanged. The main tools used in our analysis come from the theory of monotone dynamical systems. We review some of the features of this theory and provide a self-contained proof of a particular attractivity result which is used in proving our main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H. (1978). J. Math. Anal. Appl. 65: 432–467

    Article  Google Scholar 

  2. Angeli D., Sontag E.D. (2003). IEEE Trans. Autom. Control 48: 1684–1698

    Article  Google Scholar 

  3. Angeli D., Sontag E.D. (2004). Systems and Control Lett. 51: 185–202

    Article  Google Scholar 

  4. Angeli D., De Leenheer P., Sontag E.D. (2004). Systems and Control Lett. 52: 407–414

    Article  Google Scholar 

  5. D. Angeli and E.D. Sontag, Interconnections of monotone systems with steady-state characteristics, in Optimal Control, Stabilization, and Nonsmooth Analysis, eds. M. de Queiroz, M. Malisoff, and P. Wolenski (Springer-Verlag, Heidelberg, (2004) pp. 135–154).

  6. Angeli D., Ferrell J.E., Jr., Sontag E.D. (2004). Proc. Natl. Acad. Sci. USA 101: 1822–1827

    Article  CAS  Google Scholar 

  7. Chaves M., Sontag E.D. (2002). Eur. J. Control 8: 343–359

    Google Scholar 

  8. De Leenheer P., Angeli D., Sontag E.D. (2005). Math Biosci Eng. 2: 25–42

    Google Scholar 

  9. P. De Leenheer, D. Angeli an d E.D. Sontag, Crowding effects promote coexistence in the chemostat, submitted (also DIMACS Tech report 2003-44; preliminary version entitled ‘A feedback perspective for chemostat models with crowding effects’ has appeared in the Lecture Notes in Control and Inform. Sci., 294, 167–174 (2003)).

    Google Scholar 

  10. P. De Leenheer, S.A. Levin, E.D. Sontag and C.A. Klausmeier, Global stability in a chemostat with multiple nutrients, Accepted for publication in J. Math Biol. (also DIMACS Tech report 2003-40).

  11. Feinberg M. (1987). Chem. Eng. Sci. 42: 2229–2268

    Article  CAS  Google Scholar 

  12. Hirsch M.W. (1982). SIAM J. Appl. Math. 13: 167–179

    Article  Google Scholar 

  13. Hirsch M.W. (1985). SIAM J. Math. Anal. 16: 423–439

    Article  Google Scholar 

  14. Hirsch M.W. (1988). Nonlinearity 1: 51–71

    Article  Google Scholar 

  15. Hirsch M.W. (1990). SIAM J. Math. Anal. 21: 1225–1234

    Article  Google Scholar 

  16. Hirsch M.W. (1989). J. Diff. Eqns. 80: 94–106

    Article  Google Scholar 

  17. Hirsch M.W., Smith H.L. (2003). Competitive and cooperative systems: a mini-review. Lecture Notes in Control and Inform. Sci. 294: 183–190

    Google Scholar 

  18. M.W. Hirsch and H.L. Smith, Generic quasi-convergence for strongly order preserving semiflows: a new approach, preprint.

  19. Horn F.J.M., Jackson R. (1972). Arch. Ration. Mech. Anal. 49: 81–116

    Article  Google Scholar 

  20. Jiang J.F. (1994). Bull. London Math. Soc. 26: 455–458

    Article  Google Scholar 

  21. Kunze H., Siegel D. (2002). J Math Chem. 31: 339–344

    Article  CAS  Google Scholar 

  22. Mierczynski J. (1987). SIAM J. Math. Anal. 18: 642–646

    Article  Google Scholar 

  23. Mincheva M., Siegel D. (2004). Nonlinear Anal. 56: 1105–1131

    Article  Google Scholar 

  24. A.J. Shapiro, The statics and dynamics of multicell reaction systems, Ph.D. Thesis, The University of Rochester, 1975, 176 pp (http://wwwlib.umi.com/dissertations/fullcit/7614785).

  25. Siljak D.D. (1978). Large-scale Dynamic Systems. Elsevier, North-Holland

    Google Scholar 

  26. Smillie J. (1984). SIAM J. Math. Anal. 15: 530–534

    Article  Google Scholar 

  27. H.L. Smith, Monotone Dynamical Systems (AMS, Providence (1995).

  28. Smith H.L., Waltman P. (1995). The Theory of the Chemostat. Cambridge University Press, Cambridge

    Google Scholar 

  29. E.D. Sontag, Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction, IEEE Trans. Automat. Control 46 (2001) 1028–1047. Errata in IEEE Trans. Automat. Control 47 (2002) 705.

  30. A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling wave solutions of parabolic systems (AMS, Providence, 1994).

  31. Walcher S. (2001). J. Math. Anal. Appl. 263: 543–554

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick De Leenheer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leenheer, P.D., Angeli, D. & Sontag, E.D. Monotone Chemical Reaction Networks. J Math Chem 41, 295–314 (2007). https://doi.org/10.1007/s10910-006-9075-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9075-z

Keywords

AMS subject classification

Navigation