Skip to main content
Log in

Repeat Space Theory Applied to Carbon Nanotubes and Related Molecular Networks. I

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

The present article is the first part of a series devoted to extending the Repeat Space Theory (RST) to apply to carbon nanotubes and related molecular networks. Four key problems are formulated whose affirmative solutions imply the formation of the initial investigative bridge between the research field of nanotubes and that of the additivity and other network problems studied and solved by using the RST. All of these four problems are solved affirmatively by using tools from the RST. The Piecewise Monotone Lemmas (PMLs) are cornerstones of the proof of the Fukui conjecture concerning the additivity problems of hydrocarbons. The solution of the fourth problem gives a generalized analytical formula of the pi-electron energy band curves of nanotube (a, b), with two new complex parameters c and d. These two parameters bring forth a broad class of analytic curves to which the PMLs and associated theoretical devices apply. Based on the above affirmative solutions of the problems, a central theorem in the RST, called the asymptotic linearity theorem (ALT) has been applied to nanotubes and monocyclic polyenes. Analytical formulae derived in this application of the ALT illuminate in a new global context (i) the conductivity of nanotubes and (ii) the aromaticity of monocyclic polyenes; moreover an analytical formula obtained by using the ALT provides a fresh insight into Hückel’s (4n+2) rule. The present article forms a foundation of the forthcoming articles in this series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arimoto S. (2003). Note on the repeat space theory – its development and communications with Prof. Kenichi Fukui-. J. Math. Chem. 34:253

    Article  CAS  Google Scholar 

  2. Arimoto S. (2003). New proof of the Fukui conjecture by the Functional Asymptotic Linearity Theorem. J. Math. Chem. 34:259

    Article  CAS  Google Scholar 

  3. Arimoto S. (2003). The Functional Delta Existence Theorem and the reduction of a proof of the Fukui conjecture to that of the Special Functional Asymptotic Linearity Theorem, J. Math. Chem. 34:287

    Article  CAS  Google Scholar 

  4. Arimoto S., and Fukui K., Fundamental Mathematical Chemistry, Interdisciplinary Research in Fundamental Mathematical Chemistry and Generalized Repeat Space, IFC Bulletin 1998, pp. 7–13.

  5. Arimoto S., Fukui K., Taylor K.F., and Mezey P.G. (1998). Int. J. Quantum Chem 67:57

    Article  CAS  Google Scholar 

  6. Arimoto S., Fukui K., Zizler P., Taylor K.F., and Mezey P.G. (1999). Int. J. Quantum Chem 74:633

    Article  CAS  Google Scholar 

  7. Arimoto S., Spivakovsky M., Ohno H., Zizler P., Taylor K.F., Yamabe T. and Mezey P.G. (2001). Int. J. Quantum Chem. 84:389

    Article  CAS  Google Scholar 

  8. Arimoto S., Spivakovsky M., Ohno H., Zizler P., Zuidwijk R.A., Taylor K.F., Yamabe T., and Mezey P.G. (2004). Int. J. Quantum Chem 97:765

    Article  CAS  Google Scholar 

  9. Arimoto S., Private communication (2005).

  10. Yamabe T. (1995). Synthetic Metals 70:1511

    Article  CAS  Google Scholar 

  11. Arimoto S., A study of the theoretical foundations for the correlation between structure and properties in molecules having many identical moieties (Doctoral Thesis, Department of Hydrocarbon Chemistry, Faculty of Engineering, Kyoto University, 1987).

  12. Arimoto S. (1985). Phys Lett 113A:126

    CAS  Google Scholar 

  13. Arimoto S., and Spivakovsky M. (1993). J. Math. Chem 13:217

    Article  CAS  Google Scholar 

  14. Arimoto S., Spivakovsky M., Taylor K.F., and Mezey P.G. (2005). J. Math. Chem 37:75

    Article  CAS  Google Scholar 

  15. Arimoto S., Spivakovsky M., Taylor K.F., and Mezey P.G. (2005). J. Math. Chem 37:171

    Article  CAS  Google Scholar 

  16. Tanaka K., Ago H., Yamabe T., Okahara K., and Okada M. (1997). Int. J. Quantum Chem 63:637

    Article  CAS  Google Scholar 

  17. Okahara K., Tanaka K., Aoki H., Sato T., and Yamabe T. (1994). Chem. Phys. Lett 219:462

    Article  CAS  Google Scholar 

  18. Lancaster P., and Tismenetsky M. (1985). The Theory of Matrices with Applications. Academic Press, New York

    Google Scholar 

  19. Graham A. (1981). Kronecker Products and Matrix Calculus with Applications. John Wiley, New York

    Google Scholar 

  20. Hall G.G. (1963). Matrices and Tensors. Pergamon Press, Oxford

    Google Scholar 

  21. Tadokoro H. (1979). Structure of Crystalline Polymers. John Wiley, New York

    Google Scholar 

  22. Arimoto S., Fukui K., Taylor K.F., and Mezey P.G. (1995). Int. J. Quantum Chem 53:375

    Article  CAS  Google Scholar 

  23. Hall G.G. (1955). Proc. Roy. Soc. (London) A 229:251

    Article  CAS  Google Scholar 

  24. Hall G.G. (1973). Int. J. Math. Educ. Sci. Technol. 4:233

    Google Scholar 

  25. Hall G.G. (1981). Bull. Inst. Math. Appl 17:70

    Google Scholar 

  26. Arimoto S., and Taylor K.F. (1993). J. Math. Chem 13:249

    Article  CAS  Google Scholar 

  27. Arimoto S., Fukui K., Taylor K.F., and Mezey P.G. (1995). Int. J. Quantum Chem 53:387

    Article  CAS  Google Scholar 

  28. Arimoto S., Fukui K., Ohno H., Taylor K.F., and Mezey P.G. (1997). Int. J. Quantum Chem 63:149

    Article  CAS  Google Scholar 

  29. Fukui K., Possibility of chemical creation of definite-sequence polymers – a contribution to the discussion about the origin of life, in Proceedings of the 5th IFC Symposium (May 26, 1989)

  30. Liu J., Dai H., Hafner J.H., Colbert D.T., Smalley R.E., Tans S.J., and Dekker C. (1997) Nature 385:780

    Article  CAS  Google Scholar 

  31. Martel R., Shea H.R., and Avouris P. (1999). Nature 398:299

    Article  CAS  Google Scholar 

  32. Sano M., Kamino A., Okamura J. and Shinkai S. (2001). Science 293:1299

    Article  CAS  Google Scholar 

  33. Yang L., Jiang J., and Dong J. (2003). Phys. Stat. Sol. (b) 238:115

    Article  CAS  Google Scholar 

  34. Sakai K., and Kawazoe Y. (2004). Prog. Theor. Phys 112:369

    Article  Google Scholar 

  35. Arimoto S., and Hall G.G. (1992). Int. J. Quantum Chem. 41:613

    Article  CAS  Google Scholar 

  36. Hall G.G., and Arimoto S. (1993). Int. J. Quantum Chem. 45:303

    Article  CAS  Google Scholar 

  37. Elliott D. J Austral Math Soc B 40 (E) (1998) E27

  38. Lyness J. (1985). Numer Math. 46:611

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeru Arimoto.

Additional information

The present series of articles is closely associated with the series of articles entitled ‘Proof of the Fukui conjecture via resolution of singularities and related methods’ published in the JOMC.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arimoto, S. Repeat Space Theory Applied to Carbon Nanotubes and Related Molecular Networks. I. J Math Chem 41, 231–269 (2007). https://doi.org/10.1007/s10910-006-9064-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9064-2

Keywords

AMS Subject Classification

Navigation