Skip to main content
Log in

Application of Extended-Rydberg Parameters for Extracting the 2-Body Portion of Kaxiras–Pandey Function

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

A set of relationship is developed herein between parameters of the Extended-Rydberg and the 2-body portion of the Kaxiras–Pandey potential energy functions. Unlike previous method which relied on multi-derivatives, the approach herein adopts the series expansion approach in order to recast the 2-body part of the Kaxiras–Pandey potential into a form similar to the Extended-Rydberg function. Results plotted for eight pairs of diatoms reveal good correlation. The improved agreement, as evident from a narrower gap between two sets of potential functions, may well be attributed to the removal of simplifying assumptions that were invoked in the previous method. The present relationship, together with other recently developed parametric relations, will be used for the development of an interatomic potential function converter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lennard-Jones J.E. (1924). Proc. Royal. Soc. London A 106:463

    Google Scholar 

  2. Nemethy G., Gibson K.D., Palmer K.A., Yoon C.N., Paterlini G., Zagari A., Rumsey S., and Scheraga H.A. (1992). J Phy Chem. 96:6472

    Article  CAS  Google Scholar 

  3. Cornell W.D., Cieplak P., Bayly C.I., Gould I.R., Merz K.M. Jr., Ferguson D.M., Spellmeyer D.C.,. Fox T., Caldwell J.W., and Kollman P.A. (1995). J. Am. Chem. Soc 117:5179

    Article  CAS  Google Scholar 

  4. Damm W., Frontera A., Tirado-Rives J. and Jorgensen W.L. (1997). J. Comput. Chem 18:1955

    Article  CAS  Google Scholar 

  5. Pearson E., Takai T., Halicioglu T., and Tiller W.A. (1984). J. Cryst. Growth 70:33

    Article  CAS  Google Scholar 

  6. Morse P.M. (1929). Phys. Rev 34:57

    Article  CAS  Google Scholar 

  7. Mayo S.L., Olafson B.D., and Goddard W.A. III. (1990). J Phys Chem 94:8897

    Article  CAS  Google Scholar 

  8. Barlow S., Rohl A.H., Shi S., Freeman C.M., and O’Hare D. (1996). J. Am. Chem. Soc 118:7578

    Article  CAS  Google Scholar 

  9. Morley S.D., Abraham R.J., Haworth I.S., Jackson D.E., Saunders M.R., and Vinter J.G. (1991). J. Comput.-Aided Mol. Des 5:475

    Article  CAS  Google Scholar 

  10. Biswas R., and Hamann D.R. (1985). Phys. Rev. Lett 55:2001

    Article  CAS  Google Scholar 

  11. Buckingham R.A. (1938). Proc. Royal. Soc. London A 168:264

    Article  CAS  Google Scholar 

  12. Comba P., and Hambley T.W. (1995). Molecular Modeling of Inorganic Compounds. VCH, Weinheim

    Google Scholar 

  13. Dillen J.M.L. (1995). J. Comput. Chem 16:595

    Article  CAS  Google Scholar 

  14. Allinger N.L., Chen K., and Lii J.H. (1996). J. Comput. Chem 17:642

    Article  CAS  Google Scholar 

  15. Bauer R., Maysenholder W., and Seeger A. (1982). Phys. Lett. A 90:55

    Article  Google Scholar 

  16. Rydberg R. (1931). Z. Phys 73:376

    CAS  Google Scholar 

  17. Murrell J.N., and Mottram R.E. (1990). Mol. Phys 69:571

    Article  CAS  Google Scholar 

  18. Murrell J.N., and Rodriguez-Ruiz J.A. (1990). Mol. Phys 71:823

    Article  CAS  Google Scholar 

  19. Li S., Johnston R.L., and Murrell J.N. (1992). Chem. Soc. Faraday. Trans 88:1229

    Article  CAS  Google Scholar 

  20. Al-Derzi A.R., Johnston R.L., Murrell J.N., and Rodriguez-Ruiz J.A. (1991). Mol. Phys 73:265

    Article  CAS  Google Scholar 

  21. Cox H., Johnston R.L and Murrell J.N. (1999). J. Solid State Chem 145:517

    Article  CAS  Google Scholar 

  22. Huxley P., and Murrell J.N. (1983). J. Chem. Soc. Faraday Trans. II 79:323

    Article  CAS  Google Scholar 

  23. Lim T.C. (2004). MATCH. Commun. Math Comput. Chem. 50:185

    CAS  Google Scholar 

  24. Lim T.C. (2004). Z. Naturforsch A 59:116

    CAS  Google Scholar 

  25. Lim T.C. (2003). Z. Naturforsch A 58:615

    CAS  Google Scholar 

  26. Lim T.C. (2005). J. Math. Chem 38:559

    Google Scholar 

  27. Lim T.C. (2004). J. Math. Chem 36:261

    Article  CAS  Google Scholar 

  28. Lim T.C. (2004). J. Math. Chem 36:139

    Article  CAS  Google Scholar 

  29. Lim T.C. (2004). Czech. J. Phys 54:553

    Article  Google Scholar 

  30. Lim T.C. (2004). Czech. J. Phys 54:947

    Article  CAS  Google Scholar 

  31. Lim T.C. (2004). Physica Scripta 70:347

    Article  CAS  Google Scholar 

  32. Lim T.C. (2005). MATCH Commun. Math. Comput. Chem 54:29

    CAS  Google Scholar 

  33. Lim T.C. (2004). MATCH Commun. Math. Comput. Chem 50:185

    CAS  Google Scholar 

  34. Lim T.C. (2005). Brazilian J. Phys 35:641

    CAS  Google Scholar 

  35. Kaxiras E., and Pandey K.C. (1988). Phys. Rev. B 38:12736

    Article  CAS  Google Scholar 

  36. Lim T.C. (2005). Chin. J. Phys 43:43

    CAS  Google Scholar 

  37. Lim T.C. (2004). Chin. Phys. Lett 21:2167

    Article  CAS  Google Scholar 

  38. Lim T.C. (2004). J. Math. Chem 36:147

    Article  CAS  Google Scholar 

  39. Lim T.C. (2005). Acta Chim. Slov 52:149

    CAS  Google Scholar 

  40. Lim T.C. (2005). J. Math. Chem 38:195

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teik-Cheng Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, TC. Application of Extended-Rydberg Parameters for Extracting the 2-Body Portion of Kaxiras–Pandey Function. J Math Chem 41, 135–142 (2007). https://doi.org/10.1007/s10910-006-9062-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-006-9062-4

Keywords

AMS subject classifcation

Navigation