A theory of globally convergent trust-region methods for self-consistent field electronic structure calculations that use the density matrices as variables is developed. The optimization is performed by means of sequential global minimizations of a quadratic model of the true energy. The global minimization of this quadratic model, subject to the idempotency of the density matrix and the rank constraint, coincides with the fixed-point iteration. We prove that the global minimization of this quadratic model subject to the restrictions and smaller trust regions corresponds to the solution of level-shifted equations. The precise implementation of algorithms leading to global convergence is stated and a proof of global convergence is provided. Numerical experiments confirm theoretical predictions and practical convergence is obtained for difficult cases, even if their geometries are highly distorted. The reduction of the trust region is performed by a strategy that uses the structure of the energy function providing the algorithm with a nice practical behavior. This framework may be applied to any problem with idempotency constraints and for which the derivative of the objective function is a symmetric matrix. Therefore, application to calculations based both on Hartree–Fock or Kohn–Sham density functional theory are straightforward.
Similar content being viewed by others
References
Cancès E. and Le Bris C. (2000). Int. J. Quantum Chem 79:82
Cancès E. and Le Bris C. (2000). ESAIM-Math. Model Num 34:749
Thogersen L., Olsen J., Yeager D., Jorgensen P., Salek P. and Helgaker T. (2004). J. Chem. Phys 121:16
Thogersen L., Olsen J., Köhn A., Jorgensen P., Salek P. and Helgaker T. (2005). J. Chem. Phys 123:074103
Francisco J.B., Martínez J.M. and Martínez L. (2004). J. Chem. Phys 121:10863
Auchmuty G. and Jia W. (1994). ESAIM-Math. Model. Num 28:575
Helgaker T., Jorgensen P. and Olsen J. (2000). Molecular Electronic-Structure Theory. John Wiley & Sons Inc., New York, NY
Bacskay G.B. (1981). Chem. Phys 61:385
A.D. Daniels and Scuseria G.E. (2000). Phys. Chem. Chem. Phys 2:2173
Pulay P. (1991). Chem. Phys. Lett 180:461
Pulay P. (1982). J. Comput. Chem 3:556
Kudin K.N., Scuseria G.E. and Cancès E. (2002). J. Chem. Phys 116:8255
M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 03 (Gaussian, Inc., Pittsburgh PA, 2003).
Francisco J.B., Ph. D. Thesis, Department of Applied Mathematics, State University of Campinas (2005).
Conn A.R., Gould N.I.M. and Toint Ph.L. (2000). Trust-region Methods, MPS-SIAM Series on Optimization. SIAM, Philadelphia
M.J.D. Powell, in: Nonlinear Programming, eds. Rosen J.B., O.L. Mangasarian and K. Ritter (Academic Press, London, 1970).
Sorensen D.C. (1982). SIAM J. Numer Anal. 19:409
Martínez J.M. and Santos S.A. (1995). Math. Program 68:267
Fletcher R. (1987). Practical Methods of Optimization, 2nd ed. Wiley, New York
Lions P.L. (1987). Comm. Math. Phys 109:33
Saunders V.R. and Hillier I.H. (1973). Int. J. Quantum Chem 7:699
Thogersen L., Private Communication (2005).
Barzilai J. and Borwein J.M. (1988). IMA J. Numer. Anal 8:141
Raydan M. (1993). IMA. J. Numer. Anal 13:321
Raydan M. (1997). SIAM J. Optimiz 7:26
Luengo F., Raydan M., Glunt W. and Hayden T.L. (2002). Numer. Algorithms 30:241
Birgin E.G., Martínez J.M. and Raydan M. (2000). SIAM J. Optimiz. 10:1196
Birgin E.G., Martínez J.M. and Raydan M. (2003). IMA J. Numer. Anal. 23:539
Fletcher R., “On the Barzilai-Borwein method”, Dundee, Scotland, 2001 (http://www.maths. dundee.ac.uk/~ftp/na-reports/NA207_RF.ps.Z).
Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M. and Montgomery J.A. (1993). J Comput Chem 14:1347
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Francisco, J.B., Martínez, J.M. & Martínez, L. Density-based Globally Convergent Trust-region Methods for Self-consistent Field Electronic Structure Calculations. J Math Chem 40, 349–377 (2006). https://doi.org/10.1007/s10910-006-9058-0
Received:
Revised:
Published:
Issue date:
DOI: https://doi.org/10.1007/s10910-006-9058-0


