Skip to main content
Log in

Density-based Globally Convergent Trust-region Methods for Self-consistent Field Electronic Structure Calculations

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

A theory of globally convergent trust-region methods for self-consistent field electronic structure calculations that use the density matrices as variables is developed. The optimization is performed by means of sequential global minimizations of a quadratic model of the true energy. The global minimization of this quadratic model, subject to the idempotency of the density matrix and the rank constraint, coincides with the fixed-point iteration. We prove that the global minimization of this quadratic model subject to the restrictions and smaller trust regions corresponds to the solution of level-shifted equations. The precise implementation of algorithms leading to global convergence is stated and a proof of global convergence is provided. Numerical experiments confirm theoretical predictions and practical convergence is obtained for difficult cases, even if their geometries are highly distorted. The reduction of the trust region is performed by a strategy that uses the structure of the energy function providing the algorithm with a nice practical behavior. This framework may be applied to any problem with idempotency constraints and for which the derivative of the objective function is a symmetric matrix. Therefore, application to calculations based both on Hartree–Fock or Kohn–Sham density functional theory are straightforward.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cancès E. and Le Bris C. (2000). Int. J. Quantum Chem 79:82

    Article  Google Scholar 

  2. Cancès E. and Le Bris C. (2000). ESAIM-Math. Model Num 34:749

    Article  Google Scholar 

  3. Thogersen L., Olsen J., Yeager D., Jorgensen P., Salek P. and Helgaker T. (2004). J. Chem. Phys 121:16

    Article  PubMed  CAS  Google Scholar 

  4. Thogersen L., Olsen J., Köhn A., Jorgensen P., Salek P. and Helgaker T. (2005). J. Chem. Phys 123:074103

    Article  PubMed  CAS  Google Scholar 

  5. Francisco J.B., Martínez J.M. and Martínez L. (2004). J. Chem. Phys 121:10863

    Article  PubMed  CAS  Google Scholar 

  6. Auchmuty G. and Jia W. (1994). ESAIM-Math. Model. Num 28:575

    Google Scholar 

  7. Helgaker T., Jorgensen P. and Olsen J. (2000). Molecular Electronic-Structure Theory. John Wiley & Sons Inc., New York, NY

    Google Scholar 

  8. Bacskay G.B. (1981). Chem. Phys 61:385

    Article  CAS  Google Scholar 

  9. A.D. Daniels and Scuseria G.E. (2000). Phys. Chem. Chem. Phys 2:2173

    Google Scholar 

  10. Pulay P. (1991). Chem. Phys. Lett 180:461

    Article  Google Scholar 

  11. Pulay P. (1982). J. Comput. Chem 3:556

    Article  CAS  Google Scholar 

  12. Kudin K.N., Scuseria G.E. and Cancès E. (2002). J. Chem. Phys 116:8255

    Article  CAS  Google Scholar 

  13. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Montgomery, Jr., R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, N. Rega, P. Salvador, J.J. Dannenberg, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Ortiz, A.G. Baboul, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle and J.A. Pople, Gaussian 03 (Gaussian, Inc., Pittsburgh PA, 2003).

  14. Francisco J.B., Ph. D. Thesis, Department of Applied Mathematics, State University of Campinas (2005).

  15. Conn A.R., Gould N.I.M. and Toint Ph.L. (2000). Trust-region Methods, MPS-SIAM Series on Optimization. SIAM, Philadelphia

    Google Scholar 

  16. M.J.D. Powell, in: Nonlinear Programming, eds. Rosen J.B., O.L. Mangasarian and K. Ritter (Academic Press, London, 1970).

  17. Sorensen D.C. (1982). SIAM J. Numer Anal. 19:409

    Article  Google Scholar 

  18. Martínez J.M. and Santos S.A. (1995). Math. Program 68:267

    Article  Google Scholar 

  19. Fletcher R. (1987). Practical Methods of Optimization, 2nd ed. Wiley, New York

    Google Scholar 

  20. Lions P.L. (1987). Comm. Math. Phys 109:33

    Article  Google Scholar 

  21. Saunders V.R. and Hillier I.H. (1973). Int. J. Quantum Chem 7:699

    Article  Google Scholar 

  22. Thogersen L., Private Communication (2005).

  23. Barzilai J. and Borwein J.M. (1988). IMA J. Numer. Anal 8:141

    Google Scholar 

  24. Raydan M. (1993). IMA. J. Numer. Anal 13:321

    Google Scholar 

  25. Raydan M. (1997). SIAM J. Optimiz 7:26

    Article  Google Scholar 

  26. Luengo F., Raydan M., Glunt W. and Hayden T.L. (2002). Numer. Algorithms 30:241

    Article  Google Scholar 

  27. Birgin E.G., Martínez J.M. and Raydan M. (2000). SIAM J. Optimiz. 10:1196

    Article  Google Scholar 

  28. Birgin E.G., Martínez J.M. and Raydan M. (2003). IMA J. Numer. Anal. 23:539

    Article  Google Scholar 

  29. Fletcher R., “On the Barzilai-Borwein method”, Dundee, Scotland, 2001 (http://www.maths. dundee.ac.uk/~ftp/na-reports/NA207_RF.ps.Z).

  30. Schmidt M.W., Baldridge K.K., Boatz J.A., Elbert S.T., Gordon M.S., Jensen J.H., Koseki S., Matsunaga N., Nguyen K.A., Su S.J., Windus T.L., Dupuis M. and Montgomery J.A. (1993). J Comput Chem 14:1347

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Mario Martínez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Francisco, J.B., Martínez, J.M. & Martínez, L. Density-based Globally Convergent Trust-region Methods for Self-consistent Field Electronic Structure Calculations. J Math Chem 40, 349–377 (2006). https://doi.org/10.1007/s10910-006-9058-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1007/s10910-006-9058-0

Keywords