Skip to main content

Putting molecular similarity into context: asymmetric indices for field-based similarity measures

Abstract

Some of the most widely used indices in molecular similarity searching are intrinsically symmetric in nature, meaning that each molecule under comparison contributes equally to the similarity index. For example, the Carbó and the Hodgkin–Richards similarity indices are respectively, related to the geometric and arithmetic averages of the molecular self-similarities. This work introduces the asymmetric forms of an entire family of field-based molecular similarity indices. By incorporating a weighted contribution of each molecule into the similarity index, the newly obtained asymmetric forms allow for measuring and modulating the similarity of one molecule in the context of another and thus have the potential of alleviating the size dependency often observed in chemical similarity searching

This is a preview of subscription content, access via your institution.

References

  1. Tversky A. (1977). Features of similarity. Psychol. Rev. 84:327–352

    Article  Google Scholar 

  2. Holman E.W. (1979). Monotonic models for asymmetric proximities. J. Math. Psychol. 20:1–15

    Article  Google Scholar 

  3. Nosofsky R.M. (1991). Stimulus bias, asymmetric similarity, and classification. Cogn. Psychol. 23:91–140

    Article  Google Scholar 

  4. Johannesson M. (2000). Modelling asymmetric similarity with prominence, Br. J. Math. Stat. Psychol. 53:121–139

    Article  Google Scholar 

  5. G.M. Maggiora and V. Shanmugasundaram, Molecular Similarity Measures, in Chemoinformatics: Concepts, Methods, and Tools for Drug Discovery, ed. J. Bajorath, Methods Mol Biol., vol. 275, pp. 1–50.

  6. Willett P. (1998). Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38:983–996

    CAS  Google Scholar 

  7. J. Bradshaw, Introduction to Tversky similarity measure. Presented at the 11th Annual Daylight MUG Meeting, Laguna Beach (CA), February 1997. http://www.daylight.com/meetings/mug97/Bradshaw/MUG97/tv_tversky.html.

  8. G.M. Maggiora, J. Mestres, T.R. Hagadone and M.S. Lajiness, Asymmetric similarity and molecular diversity, Presented at the 213th National Meeting of the American Chemical Society, San Francisco (CA), April 1997.

  9. Holliday J.D., Salim N., Whittle M., Willett P. (2003). Analysis and display of the size dependence of chemical similarity coefficients. J. Chem. Inf. Comput. Sci. 43:819–828

    Article  CAS  Google Scholar 

  10. Cramer R.D. III., Patterson D.E., Bunce J.D. (1988). Comparative molecular field analysis (CoMFA) .1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc. 110:5959–5967

    Article  CAS  Google Scholar 

  11. Klebe G., Abraham U., Mietzner T. (1994). Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J. Med. Chem. 37:4130–4146

    Article  CAS  Google Scholar 

  12. Lemmen C., Lengauer T. (2000). Computational methods for the structural alignment of molecules. J. Comput. Aided Mol. Design 14:215–232

    Article  CAS  Google Scholar 

  13. Carbó R., Besalú E., Amat L., Fradera X. (1996). On quantum molecular similarity measures (QMSM) and indices (QMSI). J. Math. Chem. 19:47–56

    Article  Google Scholar 

  14. Maggiora G.M., Petke J.D., Mestres J. (2002). A general analysis of field-based molecular similarity indices. J. Math. Chem. 31:251–270

    Article  CAS  Google Scholar 

  15. Carbó R., Leyda L., Arnau M. (1980). How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Intl. J. Quantum Chem. 17:1185–1189

    Article  Google Scholar 

  16. Hodgkin E.E., Richards W.G. (1987). Molecular similarity based on electrostatic potential and electric field. Intl. J. Quantum Chem. Quantum Biol. Symp. 14:105–110

    Article  CAS  Google Scholar 

  17. Petke J.D. (1993). Cumulative and discrete similarity analysis of electrostatic potentials and fields. J. Comput. Chem. 14: 928–933

    Article  CAS  Google Scholar 

  18. Klir G.J., Yuan B. (1995). Fuzzy Sets and Fuzzy Logic – Theory and Applications. Prentice-Hall, Upper Saddle River, NJ, Chapter 3

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Mestres.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mestres, J., Maggiora, G.M. Putting molecular similarity into context: asymmetric indices for field-based similarity measures. J Math Chem 39, 107–118 (2006). https://doi.org/10.1007/s10910-005-9007-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-9007-3

Keywords

  • asymmetric similarity
  • molecular fields
  • similarity searching
  • virtual screening