Skip to main content
Log in

On Transfer Function Formalism for Chemical Reactor Monitoring by Continuous Flow Techniques

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Mathematical expressions for the response of a flow-through system for reactor monitoring have been obtained considering the transfer function formalism, where the output of a linear system to an arbitrary input signal could be known by means of the transfer function of this linear system. A transfer function without and with a pseudo-first order chemical reaction based on an axial dispersion model is proposed. These transfer functions allow the description of a great variety of situations as the dynamic response of the system equations against impulse, step and pulse perturbations. Two empirical parameters related with the diffusion coefficient of the solute and geometrical magnitudes of the flowing system are proposed. The model has been checked experimentally studying the dispersion of different non-reacting dye solutions and the kinetics of phenolphthalein decolouration in alkaline media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.S. Fogler (1999) Elements of Chemical Reaction Engineering EditionNumber3 Prentice Hall New Jersey

    Google Scholar 

  2. V.W. Weekman (1974) AIChE J. 20 833–840 Occurrence Handle10.1002/aic.690200502

    Article  Google Scholar 

  3. J. Ruzicka E.H. Hansen (1988) Flow Injection Analysis EditionNumber2 John Wiley & Sons New York

    Google Scholar 

  4. B. Kalberg G.E. Pacey (1989) Flow Injection Analysis. A Practical Guide Elsevier Amsterdam

    Google Scholar 

  5. T. Korenaga (1992) Anal. Chim. Acta 261 539 Occurrence Handle10.1016/0003-2670(92)80236-Z

    Article  Google Scholar 

  6. G. Taylor (1953) Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 219 186

    Google Scholar 

  7. G. Taylor (1954) Proc. R. Soc. London, Ser. A: Math. Phys. Sci. 223 446

    Google Scholar 

  8. R. Aris (1956) Proc. R. Soc. London Ser. A: Math. Phys. Sci. 235 67

    Google Scholar 

  9. K.R. Westerterp V.V. Dil’man Kronberg (1995) AIChE J. 41 2013 Occurrence Handle10.1002/aic.690410902

    Article  Google Scholar 

  10. S.D. Kolev E. Pungor (1988) Anal. Chem. 60 1700 Occurrence Handle10.1021/ac00168a014

    Article  Google Scholar 

  11. G. Taylor (1954) Proc. R. Soc. of London, Ser. A: Math. Phys. Sci. 225 473

    Google Scholar 

  12. V. Hancil V. Rod M. Resenbaum (1979) Chemi. Eng. Commun. 3 155

    Google Scholar 

  13. O. Levenspiel (1999) Chemical Reaction Engineering John Wiley & Sons New York

    Google Scholar 

  14. P.V. Danckwerts (1953) Chem. Eng. Sci. 2 1 Occurrence Handle10.1016/0009-2509(53)80001-1

    Article  Google Scholar 

  15. J.F. Tyson (1990) Analyst 115 587 Occurrence Handle10.1039/an9901500587

    Article  Google Scholar 

  16. D.C. Stone J.F. Tyson (1989) Analyst 114 1453 Occurrence Handle10.1039/an9891401453

    Article  Google Scholar 

  17. Y. Narusawa Y. Miyamae (1994) Anal. Chim. Acta 196 129 Occurrence Handle10.1016/0003-2670(94)80257-2

    Article  Google Scholar 

  18. Y. Narusawa Y. Miyamae (1995) Anal. Chim. Acta 309 227 Occurrence Handle10.1016/0003-2670(95)00042-X

    Article  Google Scholar 

  19. D. Betteridge C.Z. Marczewski A.P. Wade (1984) Anal. Chim. Acta 165 227 Occurrence Handle10.1016/S0003-2670(00)85204-6

    Article  Google Scholar 

  20. D.E. Seborg T.F. Edgar D.A. Mellichamp (1989) Process Dynamics and Control John Wiley & Sons New York

    Google Scholar 

  21. J.J. DiStefano A.R. Stubberud I.J. Williams (1990) Feedback and Control Systems EditionNumber2 Schaum’s Outline Series New York

    Google Scholar 

  22. S.D. Kolev (1995) Analy. Chim. Acta 308 36 Occurrence Handle10.1016/0003-2670(94)00574-6

    Article  Google Scholar 

  23. R. DeLon Hull R.E. Malick J.G. Dorsey (1992) Anal. Chim. Acta 267 1 Occurrence Handle10.1016/0003-2670(92)85001-M

    Article  Google Scholar 

  24. H. Brenner D.A. Edwards (1993) Macrotransport Processes Butterworth-Heinemann Stoneham

    Google Scholar 

  25. D. Zwillinger (1996) CRC Standard Mathematical Tables and Formulae EditionNumber30 CRC Press Boca Raton

    Google Scholar 

  26. G. Horvai E. Pungor (1987) CRC Crit. Rev. Anal. Chem. 17 231

    Google Scholar 

  27. C. Gottschalk J.A. Libra A. Saupe (2000) Ozonation of Water and Wastewater. A Practical Guide to Understanding Ozone and its Application Weinheim Whiley-VCH

    Google Scholar 

  28. L.S. Clesceri A.E. Greenberg A.D. Eaton (1998) Standard Methods for the Examination of Water and Wastewater APHA, AWWA, WEF Washington

    Google Scholar 

  29. W.J. Masschelein (1998) Ozone Sci. Eng. 20 489

    Google Scholar 

  30. M.R. Straka G. Gordon G.E. Pacey (1985) Anal. Chem. 57 1799 Occurrence Handle10.1021/ac00286a004

    Article  Google Scholar 

  31. W.D. Deckwer (1992) Bubble Column Reactor John Wiley & Sons Chichester

    Google Scholar 

  32. D.T. Chen K.J. Laidler (1959) Can. J. Chem. 37 599

    Google Scholar 

  33. A. Massod N.K. Shastri B. Krishna (1970) Chim. Anal. 52 1289

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Navarro-Laboulais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abad, A., Cardona, S.C., Torregrosa, J.I. et al. On Transfer Function Formalism for Chemical Reactor Monitoring by Continuous Flow Techniques. J Math Chem 38, 541–564 (2005). https://doi.org/10.1007/s10910-005-6907-1

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-005-6907-1

Keywords

Navigation