Skip to main content
Log in

The effect of ambient temperature on the propagation of nonadiabatic combustion waves

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

In this paper, we undertake an analytical and numerical investigation of the linear stability and properties of travelling nonadiabatic combustion wave for the case of nonzero ambient temperature. Here we consider premixed fuel with one-step exothermic reaction described by Arrhenius law. The speed of the front is estimated analytically by employing the matched asymptotic expansion approach and numerically using the shooting and relaxation methods. It is shown that increasing the ambient temperature results in the growth of both the flame speed and the region of existence of the travelling wave solutions in the parameter space. The linear stability of the travelling wave solution is investigated analytically by using the matched asymptotic expansion method and numerically by employing the Evans function approach. We demonstrate that by increasing the ambient temperature the stability of the propagating wave can also be increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Merzhanov E.N. Rumanov (1999) Rev. Mod. Phys. 71 1173–1211

    Google Scholar 

  2. S.B. Margolis B.J. Matkowsky (1983) Combust. Sci. Technol. 34 45–77

    Google Scholar 

  3. S.B. Margolis (1991) Prog. Energy Combust Sci. 17 135–162

    Google Scholar 

  4. J.J. Moore H.J. Feng (1995) Prog. Mater. Sci. 39 243–273

    Google Scholar 

  5. J.J. Moore H.J. Feng (1995) Prog. Mater. Sci. 39 275–316

    Google Scholar 

  6. A. Makino (2001) Prog. Energy Combust. Sci. 27 1–74

    Google Scholar 

  7. B.J. Matkowsky G.I. Sivashinsky (1978) SIAM J. Appl. Math. 35 465–478

    Google Scholar 

  8. B.J. Matkowsky D.O. Olagunju (1980) SIAM J. Appl. Math. 39 290–300

    Google Scholar 

  9. K.G. Shkadinskii B.I. Khaikin A.G. Merzhanov (1971) Combust. Expl. Shock Waves 7 15–22

    Google Scholar 

  10. R.O. Weber G.N. Mercer H.S. Sidhu B.F. Gray (1997) Proc. R. Soc. Lond. A 453 1105–1118

    Google Scholar 

  11. A. Bayliss B.J. Matkowsky (1990) SIAM J. Appl. Math. 50 437–459

    Google Scholar 

  12. I. Brailovsky G. Sivashinsky (1993) Physica D 65 191–198

    Google Scholar 

  13. M. Frankel V. Roytburd G. Sivashinsky (1994) SIAM J. Appl. Math. 54 1101–1112

    Google Scholar 

  14. D.A. Schult (1999) SIAM J. Appl. Math. 60 136–155

    Google Scholar 

  15. W.B. Bush F.E. Fendell (1970) Combust. Sci. Technol. 1 421–428

    Google Scholar 

  16. G. Joulin P. Clavin (1979) Combust Flame 35 139–153

    Google Scholar 

  17. M.R. Booty S.B. Margolis B.J. Matkowsky (1987) SIAM J. Appl. Math. 47 1241–1286

    Google Scholar 

  18. R.O. Weber E. Balakrishnan G.C. Wake (1998) J. Chem. Soc., Faraday Trans. 94 3613–3617

    Google Scholar 

  19. S.D. Watt R.O. Weber H.S. Sidhu G.N. Mercer (1999) IMA J. Appl. Math. 62 195–206

    Google Scholar 

  20. V.V. Gubernov G.N. Mercer H.S. Sidhu R.O. Weber (2003) SIAM J. Appl. Math. 63 1259–1275

    Google Scholar 

  21. V.V. Gubernov G.N. Mercer H.S. Sidhu R.O. Weber (2004) Proc. R. Soc. Lond. A 460 2415

    Google Scholar 

  22. Y.A. Kuznetsov (1995) Elements of Applied Bifurcation Theory Springer New York

    Google Scholar 

  23. A.C. McIntosh R.O. Weber G.N. Mercer (2004) ANZIAM J. 46 1

    Google Scholar 

  24. Ya B. Zeldovich G.I. Barenblatt V.B. Librovich G.M. Makhviladze (1985) The Mathematical Theory of Combustion, Explosions Consultants Bureau New York

    Google Scholar 

  25. D. Henry (1981) Geometric Theory of Semilinear Parabolic Equations Springer-Verlag New York

    Google Scholar 

  26. A.I. Volpert, V.A. Volpert and V.A. Volpert, Traveling Wave Solutions of Parabolic Systems (Trans. Math. Monographs vol. 140).

  27. A.L. Afendikov T.J. Bridges (2001) Proc. R. Soc. Lond. A 457 257–272

    Google Scholar 

  28. W.H. Press S.A. Teukolsky W.T. Vetterling B.P. Flannery (1992) Numerical Recipes in C: The Art of Scientific Computing Cambridge University Press Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. S. Sidhu.

Additional information

AMS subject classification: cation: 35K57, 80A25

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubernov, V.V., Sidhu, H.S. & Mercer, G.N. The effect of ambient temperature on the propagation of nonadiabatic combustion waves. J Math Chem 37, 149–162 (2005). https://doi.org/10.1007/s10910-004-1447-7

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-004-1447-7

Keywords

Navigation