Skip to main content
Log in

Computation of quasiclassical trajectories by symplectic algorithm for the N(4S) + O2(X \(^{3}\Sigma_{\rm g}^{-})\rightarrow\) NO(X2Π) + O(3P) reaction system

  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Computation of quasiclassical trajectories for the N(4S) + O2(X \(^{3}\Sigma_{\rm g}^{-})\!\rightarrow\!\) NO(X2Π)  + O(3P) atmospheric reaction system, based on a new ground potential energy surface reported by R.Sayós et al., has been performed in this work by means of both the fourth-order explicit symplectic algorithm (S4) and the fourth-order Runge–Kutta scheme (RK4), and then computed results of two schemes are compared. It is shown that RK4 cannot preserve energy conservation and symplectic structure of the reaction system, which results in the bad veracity of the trajectory calculation. RK4 cannot rightly reflect both the colliding mode and the reaction mode of the trajectories. Moreover, the amplitudes of vibration of the reactant molecule and the product molecule become gradually small with the time increasing, and their rotation–vibrational levels in fact vary during the integration. For these reasons, RK4 cannot assure the accuracy of the quasiclassical trajectory (QCT) study of the atmospheric reaction. However, S4 maintains these characteristics and can actually describe the circumstance of the reaction system. S4 is better than RK4 is prospective in the QCT study of the chemical reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.M. Raff and D.L. Thompson, Theory of Chemical Reaction Dynamics, Vol. III, ed. M. Bear, (Florida: CRC Press, Inc. Boca Raton, FL 1985), 1. pp

  2. L.M. Raff and D.L. Thompson, Theory of Chemical Reaction Dynamics, Vol. III, ed. M. Bear (Florida: CRC Press, Inc. Boca Raton, 1985), 8. pp

  3. P. Brumer M. Karplus (1973) Faraday Disc. Chem. Soc. 55 80

    Google Scholar 

  4. R.D. Ruth (1983) IEEE Trans. Nuc. Sci. 30 2669

    Google Scholar 

  5. K. Feng, in: Proceedings of the 1984 Beijing Symposium on Differential Geometry and Differential Equations Computation of Partial Differential Equations, ed. K. Feng (Science Press, Beijing, 1985), 42. pp

  6. K. Feng (1986) J. Comp. Math. 4 279

    Google Scholar 

  7. K. Feng M.Z. Qin (1991) Prog. Nat. Sci. 1 105

    Google Scholar 

  8. K. Feng, in: Proceedings of the 1st China–Japan Conference on Numerical Mathematics (World Scientific, Beijing, 1992; Singapore, 1993)

  9. H. Yoshida (1990) Phys. Lett. A. 150 262

    Google Scholar 

  10. L. Liu X.H. Liao (1994) Celest. Mech. Astron. 59 221

    Google Scholar 

  11. B. Gladman M. Duncan J. Candy (1991) Celest. Mech. Dynam. Astron. 52 221

    Google Scholar 

  12. X.S. Liu X.Y. Liu Z.Y. Zhou P.Z. Ding S.F. Pan (2000) Int. J. Quantum Chem. 79 343

    Google Scholar 

  13. X.S. Liu L.W. Su X.Y. Liu P.Z. Ding (2001) Int. J. Quantum Chem. 83 303

    Google Scholar 

  14. P. Warneck, Chemistry of the Natural Atmosphere, chap. 3 (Academic, San Diego, 1998)

  15. N. Balakrishnam E. Sergueeva V. Kharchenko A. Dalgarno (2000) J. Geo-phys. Res. 105 18549

    Google Scholar 

  16. M. González I. Miquel R. Sayós (2001) J. Chem. Phys. 115 8838

    Google Scholar 

  17. M. González I. Miquel R. Sayós (2002) Chem. Phys. Lett 360 521

    Google Scholar 

  18. R. Sayós C. Oliva M. González (2002) J. Chem. Phys. 117 670

    Google Scholar 

  19. M.Z. Qin D.L. Wang M.Q. Zhang (1991) J. Comp. Math. 9 211

    Google Scholar 

  20. M. Karplus R.N. Porter R.D. Sharma (1965) J. Chem. Phys. 43 3259

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfeng He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, J., Hua, W., Liu, X. et al. Computation of quasiclassical trajectories by symplectic algorithm for the N(4S) + O2(X \(^{3}\Sigma_{\rm g}^{-})\rightarrow\) NO(X2Π) + O(3P) reaction system. J Math Chem 37, 127–138 (2005). https://doi.org/10.1007/s10910-004-1445-9

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-004-1445-9

Keywords

Navigation