Skip to main content
Log in

Readout System for Frequency-Division Multiplexing Superconducting Detector Arrays

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting detectors have great potential in detecting microwaves and infrared waves due to their high sensitivity and accuracy in observational results. We have proposed and designed a readout system for frequency-division multiplexing superconducting detector arrays, along with corresponding backend processing and control software. The readout system consists of a baseband signal transmission board, a baseband signal receiver board, an intermediate frequency board, and a server. The baseband signal transmission board and the baseband signal receiver board are designed based on Xilinx radio frequency systems-on-chip. The backend processing and control software has been developed using the Browser/Server architecture. In this study, our designed readout system covers a resonator frequency range of 4–6 GHz or 6–8 GHz, with a multiplexing ratio of 1000:1 for each signal line. The corresponding backend processing and control software can implement functionalities such as system startup, data acquisition, real-time data flow display, IQ sweep, and nonlinear compensation of the readout system. In the recent experiments, we tested the performance of the entire system and provided the test results for the radio frequency loop test and connecting with superconducting detector array. The experimental results showed that our proposed readout system, aided by the backend processing and control software, is capable of multiplexing readout of large-array frequency-division multiplexing resonators and can be applied in various superconducting detector arrays as well. This system lays a solid foundation for future frequency-division multiplexing readout and large-array readout of superconducting detectors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. NAOC is an abbreviation of "National Astronomical Observatories, Chinese Academy of Sciences".

References

  1. J. Suzuki, H. Ishitsuka, K. Lee et al., J. Low Temp. Phys. 193, 562–569 (2018). https://doi.org/10.1007/s10909-018-2033-x

    Article  ADS  Google Scholar 

  2. C. Yu, Z. Ahmed et al., Rev. Sci. Inst. 94, 014712 (2023). https://doi.org/10.1063/5.0125084

    Article  ADS  Google Scholar 

  3. J. Zmuidzinas, Annu. Rev. Condens. Matter Phys. 3, 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  Google Scholar 

  4. H. Ishitsuka, M. Ikeno, S. Oguri et al., J. Low Temp. Phys. 184, 424–430 (2016). https://doi.org/10.1007/s10909-015-1467-7

    Article  ADS  Google Scholar 

  5. O. Bourrion, A. Bideaud, A. Benoit et al., J. Instrum. 6(06), 06012 (2011)

    Article  Google Scholar 

  6. K.D. Irwin, G.C. Hilton, in Enss, C, Cryogenic Particle Detection (Springer, Berlin, 2005), pp.63–150

    Book  Google Scholar 

  7. B. Dober, D.T. Becker, D.A. Bennett, S.A. Bryan, S.M. Duff et al., Appl. Phys. Lett. 111(24), 243510 (2017). https://doi.org/10.1063/1.5008527

    Article  ADS  Google Scholar 

  8. L.X. You, Nanophotonics. 9(9), 2673–2692 (2020). https://doi.org/10.1515/nanoph-2020-0186

    Article  Google Scholar 

  9. M.S. Allman, V.B. Verma, M. Stevens, T. Gerrits, R.D. Horansky, A.E. Lita, F. Marsili, A. Beyer, M.D. Shaw, D. Kumor, R. Mirin, S.W. Nam, Appl. Phys. Lett. 106(19), 192601 (2015)

    Article  ADS  Google Scholar 

  10. S. Miyajima, M. Yabuno, S. Miki, T. Yamashita, H. Terai, Opt. Express 26(22), 29045 (2018)

    Article  ADS  Google Scholar 

  11. Q. Zhao, A. McCaughan, F. Bellei, F. Najafi, D. De Fazio, A. Dane, Y. Ivry, K.K. Berggren, Appl. Phys. Lett. 103(14), 142602 (2013)

    Article  ADS  Google Scholar 

  12. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, F. Boes, T. Zwick, M. Siegel, Appl. Phys. Lett. 111(3), 032603 (2017)

    Article  ADS  Google Scholar 

  13. D. Zhu, Q.Y. Zhao, H. Choi, T.J. Lu, A.E. Dane, D. Englund, K.K. Berggren, Nat. Nanotechnol. 13(7), 596–601 (2018)

    Article  ADS  Google Scholar 

  14. S. Doerner, A. Kuzmin, S. Wuensch, I. Charaev, M. Siegel, IEEE Trans. Appl. Supercond. 27(4), 1–5 (2016)

    Article  Google Scholar 

  15. O. Noroozian, J.A. Mates, D.A. Bennett, J.A. Brevik, J.W. Fowler, J. Gao, G.C. Hilton, R.D. Horansky, K.D. Irwin, Z. Kang et al., Appl. Phys. Lett. 103, 202602 (2013)

    Article  ADS  Google Scholar 

  16. J.A.B. Mates, The Microwave SQUID Multiplexer, Ph.D. thesis, School University of Colorado (2011)

  17. S. Stanchfield, P. Ade, J. Aguirre, J. Brevik, H. Cho, R. Datta, M. Devlin, S. Dicker, B. Dober, D. Egan et al., J. Low Temp. Phys. 184, 460 (2016)

    Article  ADS  Google Scholar 

  18. J.D. Gard, D.T. Becker, D.A. Bennet, J.W. Fowler, G.C. Hilton, J.A.B. Mates et al., J. Low Temp. Phys. 193, 485–497 (2018)

    Article  ADS  Google Scholar 

  19. D.A. Bennet, J.A. Mates, J.D. Gard, A.S. Hoover, M.W. Rabin, C.D. Reintsema, D.R. Schmidt et al., IEEE Trans. Appl. Supercond. 25, 1 (2015)

    Article  Google Scholar 

  20. M.E.G. Redondo, T. Muscheid, R. Gartmann, J.M. Salum, L.P. Ferreyro et al. (2024) https://doi.org/10.48550/arXiv.2311.03480. [arXiv: 2311. 03480 [Astro-ph. IM]].

  21. J.P. Smith, J.I. Bailey, B.A. Mazin, IEEE 30th Annual International Symposium on FCCM, pp. 1–2 (2022)

  22. J.P. Smith, J.I. Bailey, B.A. Mazin, IEEE 30th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 1–2 (2022)

  23. R. Duan, S. McHugh, B. Serfass et al., Proc. SPIE Int. Soc. Opt. Eng. 7741, 77411V (2010). https://doi.org/10.1117/12.856832

    Article  Google Scholar 

  24. V.S. Willem, J. Andrew, O.O. Stefan, PSRDADA: Distributed Acquisition and Data Analysis for Radio Astronomy.Astrophysics Source Code Library, Published October (2021)

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China, No. 2020YFC2201700. The authors would like to thanks Prof. Xinping Deng and for him altruistic guide and professional suggestions on this work.

Author information

Authors and Affiliations

Authors

Contributions

Xiaohui Yan, Fei Liu and Ran Duan wrote the main manuscript text. Xiaoyun Ma and Xiaojing Wu developed the functionality of the readout system hardware boards. Yu Wang created the pipeline program. Ruirui Fan conducted data analysis and computations. Xiaohui Yan also developed the backend processing and control software. All authors collaborated on system integration testing and reviewed the manuscript.

Corresponding author

Correspondence to Ran Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, X., Liu, F., Duan, R. et al. Readout System for Frequency-Division Multiplexing Superconducting Detector Arrays. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03153-7

Keywords

Navigation