Skip to main content
Log in

Development of a Dual Cryogenic Detection System for the Forbidden Non-unique \(\beta\)-Decay Spectrum Study

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We present the development of a dual-detector system designed for investigating the spectral shape of forbidden non-unique beta decays. Two PbMoO\(_4\) scintillating crystals were carefully prepared for heat and light detection at milli-Kelvin (mK) temperatures. Notably, one crystal was synthesized using archaeological lead, while the other was composed of natural modern lead. The significance of employing two crystals lies in their identical dimensions and proximity, resulting in similar environmental background exposure. Their distinct internal radioactivities, particularly associated with \(^{210}\)Pb, introduce a distinguishing factor between the spectra measured in the two detectors. Our detection method includes achieving clear particle identification through the relative amplitudes of light and heat signals for both crystals. This report compares the electron-induced spectra within energy regions both below and above the endpoint of \(^{210}\)Bi beta decay. This comparative study provides valuable insights into an exact measurement of the \(^{210}\)Bi decay spectrum, forbidden non-unique beta decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data that support the findings of this study have been deposited in Institute for Basic Science.

References

  1. P. Herczeg, Prog. Particle Nucl. Phys. 46(2), 413 (2001). https://doi.org/10.1016/S0146-6410(01)00149-1.

    Article  ADS  Google Scholar 

  2. A. Falkowski, M. González-Alonso, O. Naviliat-Cuncic, J. High Energy Phys. 2021(4), 1 (2021). https://doi.org/10.1007/JHEP04(2021)126

    Article  Google Scholar 

  3. M.A. Geyh, H. Schleicher, Absolute Age Determination: Physical and Chemical Dating Methods and Their Application (Springer, Berlin, Heidelberg, 2012). https://doi.org/10.1007/978-3-642-74826-4

    Book  Google Scholar 

  4. X. Mougeot, Phys. Rev. C 91(5), 055504 (2015). https://doi.org/10.1103/PhysRevC.91.055504

    Article  ADS  Google Scholar 

  5. J.T. Suhonen, Front. Phys. 5, 55 (2017). https://doi.org/10.3389/fphy.2017.00055

    Article  Google Scholar 

  6. J. Suhonen, J. Kostensalo, Front. Phys. 7, 29 (2019). https://doi.org/10.3389/fphy.2019.00029

    Article  Google Scholar 

  7. J. Kostensalo, J. Suhonen, Int. J. Mod. Phys. A 33(09), 1843008 (2018). https://doi.org/10.1142/S0217751X1843008X

    Article  ADS  Google Scholar 

  8. M.M. Bé, V. Chisté, C. Dulieu, et al., Table of radionuclides (Vol. 4-A= 133 to 252) (2008)

  9. E. Aprile, J. Aalbers, F. Agostini et al., Phys. Rev. D 102(7), 072004 (2020). https://doi.org/10.1103/PhysRevD.102.072004

    Article  ADS  Google Scholar 

  10. B. Bhattacherjee, R. Sengupta, Phys. Lett. B 817, 136305 (2021). https://doi.org/10.1016/j.physletb.2021.136305

    Article  Google Scholar 

  11. B. Collaboration, Nature 587(7835), 577 (2020). https://doi.org/10.1038/s41586-020-2934-0

    Article  ADS  Google Scholar 

  12. K. Bunzl, W. Kracke, Nucl. Instrum. Methods A 238(1), 191 (1985). https://doi.org/10.1016/0168-9002(85)91049-6.

    Article  ADS  Google Scholar 

  13. D. McCammon, Thermal Equilibrium Calorimeters—An Introduction (Springer, Berlin, Heidelberg, 2005)

    Book  Google Scholar 

  14. Y.H. Kim, S.J. Lee, B. Yang, Supercond. Sci. Technol. 35(6), 063001 (2022). https://doi.org/10.1088/1361-6668/ac6a1c

    Article  ADS  Google Scholar 

  15. L. Pattavina, J.W. Beeman, M. Clemenza et al., Eur. Phys. J. A 55(8), 1 (2019). https://doi.org/10.1140/epja/i2019-12809-0

    Article  Google Scholar 

  16. M. Laubenstein, M. Hult, J. Gasparro et al., Appl. Radiat. Isot. 61(2), 167 (2004). https://doi.org/10.1016/j.apradiso.2004.03.039

    Article  Google Scholar 

  17. S.G. Kim, J.A. Jeon, H.B. Kim et al., IEEE Trans. Appl. Supercond. 31(5), 1 (2021). https://doi.org/10.1109/TASC.2021.3066179

    Article  Google Scholar 

  18. V. Shlegel, Y. Borovlev, D. Grigoriev et al., J. Instrum. 12(08), C08011 (2017). https://doi.org/10.1088/1748-0221/12/08/c08011

    Article  Google Scholar 

  19. H.L. Kim, H.J. Kim, I. Kim et al., J. Low Temp. Phys. 199(3), 1082 (2020)

    Article  ADS  Google Scholar 

  20. A. Khan, D.J. Daniel, H. Kim et al., Radiat. Meas. 123, 34 (2019)

    Article  Google Scholar 

  21. W. Kim, S. Kim, B. Sharma et al., J. Instrum. 17(04), P04004 (2022). https://doi.org/10.1088/1748-0221/17/04/P04004

    Article  Google Scholar 

  22. A. Grau Carles, Nucl. Instrum. Methods A 551(2), 312 (2005). https://doi.org/10.1016/j.nima.2005.05.070

    Article  ADS  Google Scholar 

  23. L. Gironi, J. Low Temp. Phys. 167, 504 (2012). https://doi.org/10.1007/s10909-012-0478-x

    Article  ADS  Google Scholar 

  24. H.L. Kim, G.B. Kim, H.J. Kim et al., IEEE Trans. Nucl. Sci. 65(2), 766 (2018). https://doi.org/10.1109/TNS.2017.2788898

    Article  ADS  Google Scholar 

  25. M. Croce, E. Bond, A. Hoover et al., Nucl. Instrum. Methods A 784, 151 (2015). https://doi.org/10.1016/j.nima.2014.12.059. https://www.sciencedirect.com/science/article/pii/S0168900214015149. Symposium on Radiation Measurements and Applications 2014 (SORMA XV)

Download references

Acknowledgements

This research is supported by the Institute for Basic Science (IBS) under project codes IBS-R016-A2. The work at NIIC was supported by the Ministry of Science and Higher Education of the Russian Federation N121031700314-5.

Author information

Authors and Affiliations

Authors

Contributions

H.L. Kim wrote the main manuscript text and prepared figures. All authors reviewed and revised the manuscript and figures.

Corresponding author

Correspondence to H. L. Kim.

Ethics declarations

Conflict of interest

This research is supported by the Institute for Basic Science (IBS) under project codes IBS-R016-A2. The work at NIIC was supported by the Ministry of Science and Higher Education of the Russian Federation N121031700314-5.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H.L., Kim, H.J., Kim, W.T. et al. Development of a Dual Cryogenic Detection System for the Forbidden Non-unique \(\beta\)-Decay Spectrum Study. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03139-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03139-5

Keywords

Navigation