Skip to main content
Log in

Thermal Annealing of AlMn Transition Edge Sensors for Optimization in Cosmic Microwave Background Experiments

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The 2020 decadal review recognized the measurement of the polarization of the cosmic microwave background (CMB) to be a top priority for the decade. CMB experiments including POLARBEAR2/Simons Array, Atacama Cosmology Telescope/Advanced-ACT, SPT-3G, the Simons Observatory, and CMB-S4 have or will use transition edge sensor (TES) bolometer fabricated with Aluminum doped with Manganese (AlMn). AlMn is a popular material choice as the superconducting transition temperature (\(T_c\)) and normal resistance (\(R_n\)) of the TES can be tuned with Mn concentration, geometric patterning, film thickness, and thermal annealing. In addition the conductivity is appropriate for both time division multiplexing and frequency division multiplexing that require 10 m\(\Omega\) and 1 \(\Omega\) sensors respectively. In this paper we present work on the ability to tune the \(T_c\) of a film based on its time and temperature thermal tuning profile combined with room temperature monitoring of film resistivity. Such control allows for the fabrication of a wide range of TES parameters from a single AlMn concentration. Scanning electron microscope (SEM) imaging shows that the AlMn film’s grain boundaries are changed by thermal annealing making the film more conductive and raising its superconducting transition temperatures, and that at high enough temperatures will eventually recover the \(T_c\) of bulk Al. We find that baking films at \(\sim\)200 \(^\circ\text{C}\) for tens of minutes yields a \(T_c\) that is suitable for 100 mK base temperature experiments and we present on the thermal tune profiles of several different thicknesses of AlMn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.A. Sobrin, A.J. Anderson, A.N. Bender, B.A. Benson, D. Dutcher, A. Foster, N. Goeckner-Wald, J. Montgomery, A. Nadolski, A. Rahlin, P.A.R. Ade, Z. Ahmed, E. Anderes, M. Archipley, J.E. Austermann, J.S. Avva, K. Aylor, L. Balkenhol, P.S. Barry, R.B. Thakur, K. Benabed, F. Bianchini, L.E. Bleem, F.R. Bouchet, L. Bryant, K. Byrum, J.E. Carlstrom, F.W. Carter, T.W. Cecil, C.L. Chang, P. Chaubal, G. Chen, H.-M. Cho, T.-L. Chou, J.-F. Cliche, T.M. Crawford, A. Cukierman, C. Daley, T. de Haan, E.V. Denison, K. Dibert, J. Ding, M.A. Dobbs, W. Everett, C. Feng, K.R. Ferguson, J. Fu, S. Galli, A.E. Gambrel, R.W. Gardner, R. Gualtieri, S. Guns, N. Gupta, R. Guyser, N.W. Halverson, A.H. Harke-Hosemann, N.L. Harrington, J.W. Henning, G.C. Hilton, E. Hivon, G.P. Holder, W.L. Holzapfel, J.C. Hood, D. Howe, N. Huang, K.D. Irwin, O.B. Jeong, M. Jonas, A. Jones, T.S. Khaire, L. Knox, A.M. Kofman, M. Korman, D.L. Kubik, S. Kuhlmann, C.-L. Kuo, A.T. Lee, E.M. Leitch, A.E. Lowitz, C. Lu, S.S. Meyer, D. Michalik, M. Millea, T. Natoli, H. Nguyen, G.I. Noble, V. Novosad, Y. Omori, S. Padin, Z. Pan, P. Paschos, J. Pearson, C.M. Posada, K. Prabhu, W. Quan, C.L. Reichardt, D. Riebel, B. Riedel, M. Rouble, J.E. Ruhl, B. Saliwanchik, J.T. Sayre, E. Schiappucci, E. Shirokoff, G. Smecher, A.A. Stark, J. Stephen, K.T. Story, A. Suzuki, C. Tandoi, K.L. Thompson, B. Thorne, C. Tucker, C. Umilta, L.R. Vale, K. Vanderlinde, J.D. Vieira, G. Wang, N. Whitehorn, W.L.K. Wu, V. Yefremenko, K.W. Yoon, M.R. Young, The Design and Integrated Performance of SPT-3G. Aapjs 258(2), 42 (2022). https://doi.org/10.3847/1538-4365/ac374f. arXiv:2106.11202 [astro-ph.IM]

    Article  ADS  Google Scholar 

  2. BICEP2 Collaboration, Keck Array Collaboration, SPIDER Collaboration, Ade, P.A.R., Aikin, R.W., Amiri, M., Barkats, D., Benton, S.J., Bischoff, C.A., Bock, J.J., Bonetti, J.A., Brevik, J.A., Buder, I., Bullock, E., Chattopadhyay, G., Davis, G., Day, P.K., Dowell, C.D., Duband, L., Filippini, J.P., Fliescher, S., Golwala, S.R., Halpern, M., Hasselfield, M., Hildebrandt, S.R., Hilton, G.C., Hristov, V., Hui, H., Irwin, K.D., Jones, W.C., Karkare, K.S., Kaufman, J.P., Keating, B.G., Kefeli, S., Kernasovskiy, S.A., Kovac, J.M., Kuo, C.L., LeDuc, H.G., Leitch, E.M., Llombart, N., Lueker, M., Mason, P., Megerian, K., Moncelsi, L., Netterfield, C.B., Nguyen, H.T., O’Brient, R., Ogburn, I. R. W., Orlando, A., Pryke, C., Rahlin, A.S., Reintsema, C.D., Richter, S., Runyan, M.C., Schwarz, R., Sheehy, C.D., Staniszewski, Z.K., Sudiwala, R.V., Teply, G.P., Tolan, J.E., Trangsrud, A., Tucker, R.S., Turner, A.D., Vieregg, A.G., Weber, A., Wiebe, D.V., Wilson, P., Wong, C.L., Yoon, K.W., Zmuidzinas, J.: Antenna-coupled TES Bolometers Used in BICEP2, Keck Array, and Spider. Apj 812(2), 176 (2015) https://doi.org/10.1088/0004-637X/812/2/176arXiv:1502.00619 [astro-ph.IM]

  3. ...A. Suzuki, P. Ade, Y. Akiba, C. Aleman, K. Arnold, C. Baccigalupi, B. Barch, D. Barron, A. Bender, D. Boettger, J. Borrill, S. Chapman, Y. Chinone, A. Cukierman, M. Dobbs, A. Ducout, R. Dunner, T. Elleflot, J. Errard, G. Fabbian, S. Feeney, C. Feng, T. Fujino, G. Fuller, A. Gilbert, N. Goeckner-Wald, J. Groh, T.D. Haan, G. Hall, N. Halverson, T. Hamada, M. Hasegawa, K. Hattori, M. Hazumi, C. Hill, W. Holzapfel, Y. Hori, L. Howe, Y. Inoue, F. Irie, G. Jaehnig, A. Jaffe, O. Jeong, N. Katayama, J. Kaufman, K. Kazemzadeh, B. Keating, Z. Kermish, R. Keskitalo, T. Kisner, A. Kusaka, M.L. Jeune, A. Lee, D. Leon, E. Linder, L. Lowry, F. Matsuda, T. Matsumura, N. Miller, K. Mizukami, J. Montgomery, M. Navaroli, H. Nishino, J. Peloton, D. Poletti, G. Puglisi, G. Rebeiz, C. Raum, C. Reichardt, P. Richards, C. Ross, K. Rotermund, Y. Segawa, B. Sherwin, I. Shirley, P. Siritanasak, N. Stebor, R. Stompor, J. Suzuki, O. Tajima, S. Takada, S. Takakura, S. Takatori, A. Tikhomirov, T. Tomaru, B. Westbrook, N. Whitehorn, T. Yamashita, A. Zahn, O. Zahn, The polarbear-2 and the simons array experiments. J. Low Temp. Phys. 184(3–4), 805–810 (2016). https://doi.org/10.1007/s10909-015-1425-4

    Article  ADS  Google Scholar 

  4. Galitzki, N., Baildon, T., Barron, D., Lashner, J., Lee, A.T., Li, Y., Limon, M., Lungu, M., Matsuda, F., Mauskopf, P.D., May, A.J., McCallum, N., McMahon, J., Nati, F., Niemack, M.D., Orlowski-Scherer, J.L., Parshley, S.C., Piccirillo, L., Rao, M.S., Salatino, M., Seibert, J.S., Sierra, C., Silva-Feaver, M., Simon, S.M., Staggs, S.T., Stevens, J.R., Suzuki, A., Teply, G., Thornton, R., Tsai, C., Ullom, J.N., Vavagiakis, E.M., Vissers, M.R., Westbrook, B., Wollack, E.J., Xu, Z., Zhu, N., Raum, C., Beckman, S., Jeong, O., Ali, A., Arnold, K.S., Ashton, P.C., Austermann, J.E., Baccigalupi, C., Beall, J.A., Bruno, S.M.M., Bryan, S., Calisse, P.G., Chesmore, G.E., Chinone, Y., Choi, S.K., Coppi, G., Crowley, K.D., Crowley, K.T., Cukierman, A., Devlin, M.J., Dicker, S., Dober, B., Duff, S.M., Dunkley, J., Fabbian, G., Gallardo, P.A., Gerbino, M., Goeckner-Wald, N., Golec, J.E., Gudmundsson, J., Healy, E.E., Henderson, S., Hill, C.A., Hilton, G.C., Ho, S.-P.P., Howe, L.A., Hubmayr, J., Keating, B., Koopman, B.J., Kuichi, K., Kusaka, A.: The simons observatory: instrument overview. In: Zmuidzinas, J., Gao, J.-R. (eds.) Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for Astronomy IX. SPIE, ??? (2018). https://doi.org/10.1117/12.2312985

  5. Abazajian, K., Abdulghafour, A., Addison, G.E., Adshead, P., Ahmed, Z., Ajello, M., Akerib, D., Allen, S.W., Alonso, D., Alvarez, M., Amin, M.A., Amiri, M., Anderson, A., Ansarinejad, B., Archipley, M., Arnold, K.S., Ashby, M., Aung, H., Baccigalupi, C., Baker, C., Bakshi, A., Bard, D., Barkats, D., Barron, D., Barry, P.S., Bartlett, J.G., Barton, P., Basu Thakur, R., Battaglia, N., Beall, J., Bean, R., Beck, D., Belkner, S., Benabed, K., Bender, A.N., Benson, B.A., Besuner, B., Bethermin, M., Bhimani, S., Bianchini, F., Biquard, S., Birdwell, I., Bischoff, C.A., Bleem, L., Bocaz, P., Bock, J.J., Bocquet, S., Boddy, K.K., Bond, J.R., Borrill, J., Bouchet, F.R., Brinckmann, T., Brown, M.L., Bryan, S., Buza, V., Byrum, K., Calabrese, E., Calafut, V., Caldwell, R., Carlstrom, J.E., Carron, J., Cecil, T., Challinor, A., Chan, V., Chang, C.L., Chapman, S., Charles, E., Chauvin, E., Cheng, C., Chesmore, G., Cheung, K., Chinone, Y., Chluba, J., Cho, H.-M.S., Choi, S., Clancy, J., Clark, S., Cooray, A., Coppi, G., Corlett, J., Coulton, W., Crawford, T.M., Crites, A., Cukierman, A., Cyr-Racine, F.-Y., Dai, W.-M., Daley, C., Dart, E., Daues, G., de Haan, T., Deaconu, C., Delabrouille, J., Derylo, G., Devlin, M., Di Valentino, E., Dierickx, M., Dober, B., Doriese, R., Duff, S., Dutcher, D., Dvorkin, C., Dünner, R., Eftekhari, T., Eimer, J., El Bouhargani, H., Elleflot, T., Emerson, N., Errard, J., Essinger-Hileman, T., Fabbian, G., Fanfani, V., Fasano, A., Feng, C., Ferraro, S., Filippini, J.P., Flauger, R., Flaugher, B., Fraisse, A.A., Frisch, J., Frolov, A., Galitzki, N., Gallardo, P.A., Galli, S., Ganga, K., Gerbino, M., Giannakopoulos, C., Gilchriese, M., Gluscevic, V., Goeckner-Wald, N., Goldfinger, D., Green, D., Grimes, P., Grin, D., Grohs, E., Gualtieri, R., Guarino, V., Gudmundsson, J.E., Gullett, I., Guns, S., Habib, S., Haller, G., Halpern, M., Halverson, N.W., Hanany, S., Hand, E., Harrington, K., Hasegawa, M., Hasselfield, M., Hazumi, M., Heitmann, K., Henderson, S., Hensley, B., Herbst, R., Hervias-Caimapo, C., Hill, J.C., Hills, R., Hivon, E., Hlozek, R., Ho, A., Holder, G., Hollister, M., Holzapfel, W., Hood, J., Hotinli, S., Hryciuk, A., Hubmayr, J., Huffenberger, K.M., Hui, H., Ibá nez, R., Ibitoye, A., Ikape, M., Irwin, K., Jacobus, C., Jeong, O., Johnson, B.R., Johnstone, D., Jones, W.C., Joseph, J., Jost, B., Kang, J.H., Kaplan, A., Karkare, K.S., Katayama, N., Keskitalo, R., King, C., Kisner, T., Klein, M., Knox, L., Koopman, B.J., Kosowsky, A., Kovac, J., Kovetz, E.D., Krolewski, A., Kubik, D., Kuhlmann, S., Kuo, C.-L., Kusaka, A., Lähteenmäki, A., Lau, K., Lawrence, C.R., Lee, A.T., Legrand, L., Leitner, M., Leloup, C., Lewis, A., Li, D., Linder, E., Liodakis, I., Liu, J., Long, K., Louis, T., Loverde, M., Lowry, L., Lu, C., Lubin, P., Ma, Y.-Z., Maccarone, T., Madhavacheril, M.S., Maldonado, F., Mantz, A., Marques, G., Matsuda, F., Mauskopf, P., May, J., McCarrick, H., McCracken, K., McMahon, J., Meerburg, P.D., Melin, J.-B., Menanteau, F., Meyers, J., Millea, M., Miranda, V., Mitchell, D., Mohr, J., Moncelsi, L., Monzani, M.E., Moshed, M., Mroczkowski, T., Mukherjee, S., Münchmeyer, M., Nagai, D., Nagarajappa, C., Nagy, J., Namikawa, T., Nati, F., Natoli, T., Nerval, S., Newburgh, L., Nguyen, H., Nichols, E., Nicola, A., Niemack, M.D., Nord, B., Norton, T., Novosad, V., O’Brient, R., Omori, Y., Orlando, G., Osherson, B., Osten, R., Padin, S., Paine, S., Partridge, B., Patil, S., Petravick, D., Petroff, M., Pierpaoli, E., Pilleux, M., Pogosian, L., Prabhu, K., Pryke, C., Puglisi, G., Racine, B., Raghunathan, S., Rahlin, A., Raveri, M., Reese, B., Reichardt, C.L., Remazeilles, M., Rizzieri, A., Rocha, G., Roe, N.A., Rotermund, K., Roy, A., Ruhl, J.E., Saba, J., Sailer, N., Salatino, M., Saliwanchik, B., Sapozhnikov, L., Sathyanarayana Rao, M., Saunders, L., Schaan, E., Schillaci, A., Schmitt, B., Scott, D., Sehgal, N., Shandera, S., Sherwin, B.D., Shirokoff, E., Shiu, C., Simon, S.M., Singari, B., Slosar, A., Spergel, D., St. Germaine, T., Staggs, S.T., Stark, A.A., Starkman, G.D., Steinbach, B., Stompor, R., Stoughton, C., Suzuki, A., Tajima, O., Tandoi, C., Teply, G.P., Thayer, G., Thompson, K., Thorne, B., Timbie, P., Tomasi, M., Trendafilova, C., Tristram, M., Tucker, C., Tucker, G., Umiltà, C., van Engelen, A., van Marrewijk, J., Vavagiakis, E.M., Vergès, C., Vieira, J.D., Vieregg, A.G., Wagoner, K., Wallisch, B., Wang, G., Wang, G.-J., Watson, S., Watts, D., Weaver, C., Wenzl, L., Westbrook, B., White, M., Whitehorn, N., Wiedlea, A., Williams, P., Wilson, R., Winch, H., Wollack, E.J., Kimmy Wu, W.L., Xu, Z., Yefremenko, V.G., Yu, C., Zegeye, D., Zivick, J., Zonca, A.: Snowmass 2021 CMB-S4 White Paper. arXiv e-prints, 2203–08024 (2022) https://doi.org/10.48550/arXiv.2203.08024arXiv:2203.08024 [astro-ph.CO]

  6. S.W. Henderson, R. Allison, J. Austermann, T. Baildon, N. Battaglia, J.A. Beall, D. Becker, F. De Bernardis, J.R. Bond, E. Calabrese, S.K. Choi, K.P. Coughlin, K.T. Crowley, R. Datta, M.J. Devlin, S.M. Duff, J. Dunkley, R. Dünner, A. van Engelen, P.A. Gallardo, E. Grace, M. Hasselfield, F. Hills, G.C. Hilton, A.D. Hincks, R. Hloẑek, S.P. Ho, J. Hubmayr, K. Huffenberger, J.P. Hughes, K.D. Irwin, B.J. Koopman, A.B. Kosowsky, D. Li, J. McMahon, C. Munson, F. Nati, L. Newburgh, M.D. Niemack, P. Niraula, L.A. Page, C.G. Pappas, M. Salatino, A. Schillaci, B.L. Schmitt, N. Sehgal, B.D. Sherwin, J.L. Sievers, S.M. Simon, D.N. Spergel, S.T. Staggs, J.R. Stevens, R. Thornton, J. Van Lanen, E.M. Vavagiakis, J.T. Ward, E.J. Wollack, Advanced ACTPol cryogenic detector arrays and readout. J. Low Temp. Phys. 184(3–4), 772–779 (2016). https://doi.org/10.1007/s10909-016-1575-z. arXiv:1510.02809 [astro-ph.IM]

    Article  ADS  Google Scholar 

  7. Li, H., Li, S.-Y., Liu, Y., Li, Y.-P., Cai, Y., Li, M., Zhao, G.-B., Liu, C.-Z., Li, Z.-W., Xu, H., Wu, D., Zhang, Y.-J., Fan, Z.-H., Yao, Y.-Q., Kuo, C.-L., Lu, F.-J., Zhang, X.: Probing primordial gravitational waves: Ali CMB polarization telescope. arXiv e-prints, 1710–03047 (2017) https://doi.org/10.48550/arXiv.1710.03047arXiv:1710.03047 [astro-ph.CO]

  8. D. Li, J.E. Austermann, J.A. Beall, D.T. Becker, S.M. Duff, P.A. Gallardo, S.W. Henderson, G.C. Hilton, S.-P. Ho, J. Hubmayr, B.J. Koopman, J.J. McMahon, F. Nati, M.D. Niemack, C.G. Pappas, M. Salatino, B.L. Schmitt, S.M. Simon, S.T. Staggs, J. Van Lanen, J.T. Ward, E.J. Wollack, AlMn transition edge sensors for advanced ACTPol. J. Low Temp. Phys. 184(1–2), 66–73 (2016). https://doi.org/10.1007/s10909-016-1526-8

    Article  ADS  Google Scholar 

  9. A. Suzuki, E. Kane, A.T. Lee, T. Liu, C. Raum, M. Renzullo, P. Truitt, J. Vivalda, B. Westbrook, D. Yohannes, Recent developments of commercially fabricated horn antenna-coupled transition-edge sensor bolometer detectors for next-generation cosmic microwave background polarimetry experiments. J. Low Temp. Phys. 209(5–6), 1111–1118 (2022). https://doi.org/10.1007/s10909-022-02731-x

    Article  ADS  Google Scholar 

  10. X. Qian, N. Parson, X.-G. Chen, Effects of mn content on recrystallization resistance of aa6082 aluminum alloys during post-deformation annealing. J. Mater. Sci. Technol. 52, 189–197 (2020). https://doi.org/10.1016/j.jmst.2020.04.015

    Article  Google Scholar 

  11. Westbrook, B.e.a.: The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status. J. Low Temp. Phys. 193(5-6), 758–770 (2018) https://doi.org/10.1007/s10909-018-2059-0arXiv:2210.04117 [astro-ph.IM]

  12. Westbrook, B., Raum, C., Beckman, S., Lee, A.T., Farias, N., Sasse, T., Suzuki, A., Kane, E., Austermann, J.E., Beall, J.A., Duff, S.M., Hubmayr, J., Hilton, G.C., Lanen, J.V., Vissers, M.R., Link, M.R., Halverson, N., Jaehnig, G., Ghinga, T., Stever, S., Minami, Y., Thompson, K.L., Russell, M., Arnold, K., Seibert, J., Silva-Feaver, M.: Detector fabrication development for the LiteBIRD satellite mission. In: Lystrup, M., Perrin, M.D., Batalha, N., Siegler, N., Tong, E.C. (eds.) Space Telescopes and Instrumentation 2020: Optical, Infrared, and Millimeter Wave, vol. 11443, p. 114435. SPIE, ??? (2020). https://doi.org/10.1117/12.2562978 . International Society for Optics and Photonics

Download references

Acknowledgements

We acknowledge the support from the DOE and NSF for work done by UC Berkeley for the CMB-S4 Detector fabrication working group. This work was performed under intra-university transaction agreement No. 7591532. We also acknowledge support in part by the Simons Foundation Award #457687, B.K.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Westbrook.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Westbrook, B., Prasad, B., Raum, C.R. et al. Thermal Annealing of AlMn Transition Edge Sensors for Optimization in Cosmic Microwave Background Experiments. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03130-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03130-0

Keywords

Navigation