Skip to main content
Log in

A Method of Measuring TES Complex ETF Response in Frequency-Domain Multiplexed Readout by Single Sideband Power Modulation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The digital frequency-domain multiplexing technique is widely used for astrophysical instruments with large detector arrays. Detailed detector characterization is required for instrument calibration and systematics control. We conduct the TES complex electrothermal-feedback response measurement with the DfMux readout system as follows. By injecting a single sideband signal, we induce modulation in TES power dissipation over a frequency range encompassing the detector response. The modulated current signal induced by TES heating effect is measured, allowing for the ETF response characterization of the detector. With the injection of an upper sideband, the TES readout current shows both an upper and a lower sideband. We model the upper and lower sideband complex ETF response and verify the model by fitting to experimental data. The model not only can fit for certain physical parameters of the detector, such as loop gain, temperature sensitivity, current sensitivity, and time constant, but also enables us to estimate the systematic effect introduced by the multiplexed readout. The method is therefore useful for in situ detector calibration and for estimating systematic effects during astronomical telescope observations, such as those performed by the upcoming LiteBIRD satellite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.D. Irwin, G.C. Hilton, Transition-Edge Sensors (Springer, Cham p, 2005), p.63

    Google Scholar 

  2. D. J. Benford, The SOFIA/SAFIRE far-infrared spectrometer: highlighting submillimeter astrophysics and technology. In: Submillimeter Astrophysics and Technology: a Symposium Honoring Thomas G. Phillips, vol. 417 (2009), p. 137

  3. R. L. Kelley et al., The X-ray microcalorimeter spectrometer for the international X-ray observatory. In: The Thirteenth International Workshop on Low Temperature Detectors - LTD13, vol. 1185 (2009), pp. 757–760

  4. R.D. Horansky et al., Superconducting calorimetric alpha particle sensors for nuclear nonproliferation applications. Appl. Phys. Lett. 93, 123504 (2008)

    Article  ADS  Google Scholar 

  5. R.D. Horansky et al., Analysis of nuclear material by alpha spectroscopy with a transition-edge microcalorimeter. J. Low Temp. Phys. 151, 1067–1073 (2008)

    Article  ADS  Google Scholar 

  6. M.K. Bacrania et al., Large-area microcalorimeter detectors for ultra-high-resolution X-ray and gamma-ray spectroscopy. IEEE Trans. Nucl. Sci. 56, 2299–2302 (2009)

    Article  ADS  Google Scholar 

  7. D. Rosenberg et al., Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  8. A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko, Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination. Appl. Phys. Lett. 83, 791 (2003)

    Article  ADS  Google Scholar 

  9. D. Vaccaro et al., Frequency domain multiplexing readout for large arrays of transition-edge sensors. Nucl. Instrum. Methods Phys. Res. A 1046, 167727 (2023)

    Article  Google Scholar 

  10. A.N. Bender et al., On-sky performance of the SPT-3G frequency-domain multiplexed readout. J. Low Temp. Phys. 199, 182–191 (2020)

    Article  ADS  Google Scholar 

  11. W. Asavanant et al., Time-domain-multiplexed measurement-based quantum operations with 25-MHz clock frequency. Phys. Rev. Appl. 16, 034005 (2021)

    Article  ADS  Google Scholar 

  12. H. Akamatsu et al., Demonstration of MHz frequency domain multiplexing readout of 37 transition edge sensors for high-resolution X-ray imaging spectrometers. Appl. Phys. Lett. 119, 182601 (2021)

    Article  ADS  Google Scholar 

  13. M. Dobbs et al., Multiplexed readout of CMB polarimeters. J. Phys. Conf. Ser. 155, 012004 (2009)

    Article  Google Scholar 

  14. LiteBIRD Collaboration et al., Probing cosmic inflation with the LiteBIRD cosmic microwave background polarization survey. Prog. Theor. Exp. Phys. 2023, 042F01 (2023)

  15. M.A. Lindeman et al., Impedance measurements and modeling of a transition-edge-sensor calorimeter. Rev. Sci. Instrum. 75, 1283–1289 (2004)

    Article  ADS  Google Scholar 

  16. M.A. Lindeman et al., Complex impedance and equivalent bolometer analysis of a low noise bolometer for SAFARI. J. Low Temp. Phys. 167, 96–101 (2012)

    Article  ADS  Google Scholar 

  17. Y. Zhou et al., Mapping TES temperature sensitivity and current sensitivity as a function of temperature, current, and magnetic field with IV curve and complex admittance measurements. J. Low Temp. Phys. 193, 321–327 (2018)

    Article  ADS  Google Scholar 

  18. Y. Zhou, Towards understanding the temperature and current sensitivities of transition-edge sensors. J. Phys. Conf. Ser. 1590, 012032 (2020)

    Article  Google Scholar 

  19. J. Martino et al., Complementary measurement of thermal architecture of NbSi TES with alpha particle and complex impedance. J. Low Temp. Phys. 176, 350–355 (2014)

    Article  ADS  Google Scholar 

  20. Y. Takei et al., Characterization of a high-performance Ti/Au TES microcalorimeter with a Central Cu absorber. J. Low Temp. Phys. 151, 161–166 (2008)

    Article  ADS  Google Scholar 

  21. D.J. Goldie, M.D. Audley, D.M. Glowacka, V.N. Tsaneva, S. Withington, Thermal models and noise in transition edge sensors. J. Appl. Phys. 105, 074512 (2009)

    Article  ADS  Google Scholar 

  22. M. Galeazzi, D. McCammon, Microcalorimeter and bolometer model. J. Appl. Phys. 93, 4856–4869 (2003)

    Article  ADS  Google Scholar 

  23. K.M. Kinnunen, M.R.J. Palosaari, I.J. Maasilta, Normal metal-superconductor decoupling as a source of thermal fluctuation noise in transition-edge sensors. J. Appl. Phys. 112, 034515 (2012)

    Article  ADS  Google Scholar 

  24. M.R.J. Palosaari et al., Analysis of impedance and noise data of an X-ray transition-edge sensor using complex thermal models. J. Low Temp. Phys. 167, 129–134 (2012)

    Article  ADS  Google Scholar 

  25. H. Akamatsu et al., Impedance measurement and excess-noise behavior of a Ti/Au bilayer TES calorimeter. In: The Thirteenth International Workshop on Low Temperature Detectors, vol. 1185 (2009), pp. 195–198

  26. K.D. Irwin, An application of electrothermal feedback for high resolution cryogenic particle detection. Appl. Phys. Lett. 66, 1998–2000 (1995)

    Article  ADS  Google Scholar 

  27. E. Taralli et al., Complex impedance of TESs under AC bias using FDM readout system. AIP Adv. 9, 045324 (2019)

    Article  ADS  Google Scholar 

  28. T. de Haan et al., Monitoring TES loop gain in frequency multiplexed readout. JLTP, in preparation (2023)

  29. T. de Haan et al., Recent advances in frequency-multiplexed TES readout: vastly reduced parasitics and an increase in multiplexing factor with sub-Kelvin SQUIDs. J. Low Temp. Phys. 199, 754–761 (2020)

    Article  ADS  Google Scholar 

  30. A. Suzuki et al., Commercially fabricated antenna-coupled transition edge sensor bolometer detectors for next-generation cosmic microwave background polarimetry experiment. J. Low Temp. Phys. 199, 1158–1166 (2020)

    Article  ADS  Google Scholar 

  31. K. Rotermund et al., Planar lithographed superconducting LC resonators for frequency-domain multiplexed readout systems. J. Low Temp. Phys. 184, 486–491 (2016)

    Article  ADS  Google Scholar 

  32. S. T. P. Boyd, J. C. Groh, J. A. Hall, A. Suzuki, R. Cantor, Series SQUID array amplifiers optimized for MHz frequency-domain multiplexed detector readout. In: The 17th International Workshop on Low-Temperature Detectors (2017)

  33. K. Bandura et al., ICE: a scalable, low-cost FPGA-based telescope signal processing and networking system. J. Astron. Instrum. 5, 1641005 (2016)

    Article  Google Scholar 

  34. T. de Haan, G. Smecher, M. Dobbs, Improved performance of TES bolometers using digital feedback. Millim. Submillimeter FarInfrared Detect. Instrum. Astron. VI 8452, 84520E (2012)

    Article  Google Scholar 

  35. B. Westbrook et al., The POLARBEAR-2 and Simons array focal plane fabrication status. J. Low Temp. Phys. 193, 758–770 (2018)

    Article  ADS  Google Scholar 

  36. A. Suzuki, Multichroic bolometric detector architecture for cosmic microwave background polarimetry experiments. Ph.D. thesis, University of California, Berkeley (2013)

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZY and DT wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yu Zhou.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., de Haan, T., Akamatsu, H. et al. A Method of Measuring TES Complex ETF Response in Frequency-Domain Multiplexed Readout by Single Sideband Power Modulation. J Low Temp Phys (2024). https://doi.org/10.1007/s10909-024-03107-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10909-024-03107-z

Keywords

Navigation