Skip to main content
Log in

Eigensolution and Thermodynamic Properties of Standard Coulombic Potential

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The study investigates the combination of the Coulomb potential with itself (standard Coulombic potential) under the nonrelativistic wave equation. The energy equation and the corresponding unnormalized radial wave function are obtained using the parametric Nikiforov–Uvarov method. This is achieved by applying a Green–Aldrich approximation scheme to the centrifugal term. The resulting energy equation is utilized to calculate the partition function, from which thermodynamic properties such as mean energy, specific heat capacity, entropy, and free energy are derived. Numerical results are generated for the standard Coulombic potential and its special cases, including Coulomb potential with negative potential strength and Coulomb potential with positive potential strength. The study reveals that the system’s energy is fully bounded. Notably, the two special cases, representing Coulomb–Coulomb potentials with positive and negative potential strengths, yield equal results when the strengths are equal but opposite in sign. The thermodynamic properties align with existing literature but exhibit some unique behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data used in this work are in the manuscript.

References

  1. L.-H. Zhang, X.-P. Li, C.-S. Jia, Approximate solutions of the schrodinger equation with the generalized morse potential model including the centrifugal term. Int. J. Quantum Chem. 111, 1870–1878 (2011)

    Article  Google Scholar 

  2. C.A. Onate, A.N. Ikot, M.C. Onyeaju, O. Ebomwonyi, J.O.A. Idiodi, Effect of dissociation energy on Shannon and Renyi entropies. Karbala Int. J. Mod. Sci. 4 (2018) 134e142

  3. B.J. Falaye, Arbitrary l-state solutions of the hyperbolical potential by the asymptotic iteration method. Few Body Syst. 53, 557 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  4. S.M. Ikhdair, R. Sever, Improved analytical approximation to arbitrary l-state solutions of the Schrödinger equation for the hyperbolical potential. Ann. Phys. 18, 189 (2009)

    Article  MathSciNet  Google Scholar 

  5. K.J. Oyewumi, B.J. Falaye, C.A. Onate, O.J. Oluwadare, W.A. Yahya, Thermodynamic properties and the approximate solutions of the Schrödinger equation with the shifted Deng-Fan potential model. Mol. Phys. 112, 127–141 (2014)

    Article  ADS  Google Scholar 

  6. S.H. Dong, X.Y. Gu, J. Phys, Conference Series 96, 012109 (2008)

    Article  Google Scholar 

  7. W. Sun, Y. Liu, M. Li, Q. Cheng, L. Zhao, Study on heat flow transfer characteristics and main influencing factors of waxy crude oil tank during storage heating process under dynamic thermal conditions. Energy 269, 127001 (2023)

    Article  Google Scholar 

  8. B. Bai, R. Zhou, G. Cai, W. Hu, G. Yang, Coupled thermo-hydro-mechanical mechanism in view of the soil particle rearrangement of granular thermodynamics. Comput. Geotech. 137, 104272 (2021)

    Article  Google Scholar 

  9. W. Kuang, H. Wang, X. Li, J. Zhang, Q. Zhou, Y. Zhao, Application of the thermodynamic extremal principle to diffusion-controlled phase transformations in Fe-C-X alloys: Modeling and applications. Acta Mater. 159, 16 (2018)

    Article  ADS  Google Scholar 

  10. S.-H. Dong, M. Cruz-Irisson, Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties. J. Math. Chem. 50, 881 (2012)

    Article  MathSciNet  Google Scholar 

  11. A.N. Ikot, W. Azogor, U.S. Okorie, F.E. Bazuaye, M.C. Onjeaju, C.A. Onate, E.O. Chukwuocha, Exact and Poisson summation thermodynamic properties for diatomic molecules with shifted Tietz potential. Indian J. Phys. 93, 1171 (2019)

    Article  ADS  Google Scholar 

  12. R. Khordad, H.R.R. Sedehi, Thermodynamic properties of a double ring-shaped quantum dot at low and high temperatures. J. Low Temp. Phys. 190, 200 (2018)

    Article  ADS  Google Scholar 

  13. E.P. Inyang, E.S. William, E. Omugbe, E.P. Inyang, E.A. Ibanga, F. Ayedun, I.O. Akpan, J.E. Ntibi, Application of Eckart-Hellmann potential to study selected diatomicmolecules using Nikiforov-Uvarov-Functional analysis method. Revista Mexicana de Fısica 68, 020401 (2022)

    Google Scholar 

  14. R. Khordad. Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy. Continuum Mech. Thermodyn. https://doi.org/10.1007/s00161-015-0429-2

  15. E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi, and E. S. William. Masses and thermodynamic properties of a quarkonium system. Can. J, Phys. 99(2021) 982–990

  16. I.J. Njoku, C.P. Onyenegecha, C.J. Okereke, A.I. Opara, U.M. Ukewuihe, F.U. Nwaneho, Approximate solutions of Schrodinger equation and thermodynamic properties with Hua potential. Results Phys. 24, 104208 (2021)

    Article  Google Scholar 

  17. E. P. Inyang, J. E. Ntibi, E. A. Ibanga, F. Ayedun, E. P. Inyang, E. E. Ibekwe, E. S. William and I. O. Akpan. Thermodynamic properties and mass spectra of a quarkonium system with Ultra Generalized Exponential–Hyperbolic Potential. Commun. Phys. Sci. 7 (2021)

  18. M. Demirci, R. Sever, Arbitrary ℓ-state solutions of the Klein-Gordon equation with the Eckart plus a class of Yukawa potential and its non-relativistic thermal properties. Eur. Phys. J. Plus 138, 409 (2023)

    Article  Google Scholar 

  19. M. Ramantswana, G.J. Rampho, C.O. Edet, A.N. Ikot, U.S. Okorie, K.W. Qadir, H.Y. Abdullah, Determination of thermodynamic properties of CrH, NiC and CuLi diatomic molecules with the linear combination of Hulthen-type potential plus Yukawa potential. Phys. Open 14, 100135 (2023)

    Article  Google Scholar 

  20. O.J. Oluwadare, K.J. Oyewumi, T.O. Abiola, Thermodynamic properties of some diatomic molecules confined by an harmonic oscillating system. Ind. J. Phys 96, 1921 (2022)

    Article  Google Scholar 

  21. C.-W. Wang, J. Wang, Y.-S. Liu, J. Li, X.-L. Peng, C.-S. Jia, L.-H. Zhang, L.-Z. Yi, J.-Y. Liu, C.-J. Li, X. Jia, Prediction of the ideal-gas thermodynamic properties for water. J. Mol. Liquids 321, 114912 (2021)

    Article  Google Scholar 

  22. S-H. Dong and Z-Q. Ma. Exact solutions to the Dirac equation with a Coulomb potential in 2 + 1 dimensions. Phys. Lett. A 312 (2003) 78–83

  23. M. G. Miranda, G-H. Sun and S-H. Dong. The solution of the Second Pὂschl-Teller like potential by Nikiforov-Uvarov method. Int. J. Mod. Phys. E 19 (2010) 123–129

  24. A. F. Nikiforov and V. B. Uvarov, Special Functions of Mathematical Physics. Birkhäuser, Basel (1988).

  25. H. Hassanabadi, S. Zarrinkamar, A.A. Rajabi, Exact solutions of D-dimensional Schrödinger equation for an energy-dependent potential by NU method. Commun. Theor. Phys. 55, 541–544 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Hamzavi, K.E. Thylwe, A.A. Rajabi, Approximate bound states solution of the Hellmann potential. Commun. Theor. Phys. 60, 1–8 (2013)

    Article  ADS  Google Scholar 

  27. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, H. Rahimov, Dirac equation for generalized Pöschl-Teller scalar and vector potentials and a Coulomb tensor interaction by Nikiforov-Uvarov method. J. Math. Phys. 53, 022104 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  28. M. Hamzavi, A.A. Rajabi, H. Hassanabadi, Exact spin and pseudospin symmetry solutions of the Dirac equation for Mie-type potential including a Coulomb-like tensor potential. Few-Body Syst. 48, 171–182 (2010)

    Article  ADS  Google Scholar 

  29. C. Tezcan, R. Sever, A general approach for the exact solution of the Schrödinger equation. Int. J. Theor. Phys. 48, 337–350 (2009)

    Article  Google Scholar 

  30. B.J. Falaye, Any \(\ell\)-state solutions of the Eckart potential via asymptotic iteration method. Cent. Eur. J. Phys. 10, 960–965 (2012)

    Google Scholar 

  31. Q. Dong, A.J. Torres-Arenas, G.-H. Sun, O. Camacho-Nieto, S. Femmam, S.-H. Dong, Exact solutions of the sine hyperbolic type potential. J. Math. Chem. 57, 1924–1931 (2019)

    Article  MathSciNet  Google Scholar 

  32. B.J. Falaye, S.M. Ikhdair, M. Hamzavi, Shifted Tietz-Wei oscillator for simulating the atomic interaction in diatomic molecules. J Theor Appl Phys 9, 151–158 (2015)

    Article  Google Scholar 

  33. Y. Kai, Z. Yin, On the Gaussian traveling wave solution to a special kind of Schrödinger equation with logarithmic nonlinearity. Mod. Phys. Lett. B 36(02), 2150543 (2021)

    Article  ADS  Google Scholar 

  34. Y. Li, Y. Kai. Wave structures and the chaotic behaviors of the cubic-quartic nonlinear Schrödinger equation for parabolic law in birefringent fibers. Nonlinear Dyn. 111(9) (2023)

  35. R.L. Greene, C. Aldrich, Variational wave functions for screened Coulomb potential. Phys. Rev. A 14, 2363 (1976)

    Article  ADS  Google Scholar 

  36. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eigensolution, expectation values and thermodynamic properties of the screened Kratzer potential. Euro. Phys. J. Plus. 134, 386 (2019)

  37. W.-C. Qiang, S.-H. Dong. Proper quantization rule. EPL 89, 10003 (2010)

  38. S.-H. Dong, W.-H. Huang, W.S. Chung, P. Sedaghatni, H. Hassanabadi, Exact solutions to generalized Dunkl oscillator and its thermodynamic properties. EPL 135, 30006 (2021)

    Article  ADS  Google Scholar 

  39. S.-H. Dong, W.-C. Qiang, Analytical approximations to the Schrödinger equation for a Second Pὂschl Teller-like potential with centrifugal term. Int. J. Mod. Phys. A 23, 1537–1544 (2008)

    Article  ADS  Google Scholar 

  40. X.-L. Peng, R. Jiang, C.-S. Jia, L.-H. Zhang, Y.-L. Zhao, Gibbs free energy of gaseous phosphorus dimer. Chem. Eng. Science 190, 122 (2018)

    Article  Google Scholar 

  41. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, R. Zeng, X.-T. You, Partition function of improved Tietz oscillators. Chem. Phys. Lett. 676, 150 (2017)

    Article  ADS  Google Scholar 

  42. C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.-D. Tang, Prediction of entropy and Gibbs free energy for nitrogen. Chem. Eng. Sci. 202, 70–74 (2019)

    Article  Google Scholar 

  43. R. Jiang, C.-S. Jia, Y.-Q. Wang, X.-L. Peng, L.-H. Zhang, Prediction of Gibbs free energy for the gases Cl2, Br2, and HCl. Chem. Phys. Lett. 726, 83–86 (2019)

    Article  ADS  Google Scholar 

  44. B. Tang, Y.-T. Wang, X.-L. Peng, L.-H. Zhang, C.-S. Jia, Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr. J. Mol. Struct. 1199, 126958 (2020)

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

K.O. Emeje contributed to conceptualization and writing—original draft. C.A. Onate was involved in putting the methodology together. I.B. Okon contributed to methodology. E. Omugbe was involved in formal analysis. E.S. Eyube contributed to software analysis. D.B. Olanrewaju was involved in validation. E. Aghemenloh contributed to English editing

Corresponding authors

Correspondence to K. O. Emeje or C. A. Onate.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emeje, K.O., Onate, C.A., Okon, I.B. et al. Eigensolution and Thermodynamic Properties of Standard Coulombic Potential. J Low Temp Phys 215, 109–128 (2024). https://doi.org/10.1007/s10909-024-03074-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-024-03074-5

Keywords

Navigation