Skip to main content
Log in

Thermal-Dependent Ferroelectric Cochran’s Frequency and Dielectric Properties in Arsenate-Type Family of KDP Crystal

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Phonon anharmonic interactions up to the fourth order and four-body interaction terms, with the consideration of the extra spin–lattice term, direct spin–spin interaction terms, and four spin coupling, are introduced in the earlier modified Ising type of pseudospin model Hamiltonian to account for the investigation of dielectric properties in arsenate-type family of KDP crystals. Cochran’s mode frequency and other ferroelectric properties like energy shift and width, electrical permittivity, spontaneous polarization, and loss tangent are investigated theoretically in the vicinity of \(T_{c}\). We have expressed the equation of Dyson and decoupled the correlation function with the consideration of Zuberav’s statistical article and two-time temperature-dependent Green’s function approach to deduce the theoretical derivation of the above ferroelectric parameter. The thermal variations of the order parameters \(\left\langle {S^{x} } \right\rangle\) and \(\left\langle {S^{z} } \right\rangle\) that characterize the first-order phase transition phenomenon are also introduced. A comparison of the theoretical findings has been made with the experimental findings reported by earlier authors. Good agreement is observed for the above-mentioned ferroelectric properties in CsH2AsO4, RbH2AsO4, and KH2AsO4 crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

No data are associated with the manuscript.

References

  1. E. Litov, C.W. Garland, Ferroelectrics 72(1), 19–44 (1987)

    Article  ADS  CAS  Google Scholar 

  2. C.L. Wang, Z.K. Qin, D.L. Lin, Phys. Rev. B 40(1), 680 (1989)

    Article  ADS  CAS  Google Scholar 

  3. B.A. Strukov, V.G. Vaks, A. Baddur, V.I. Zinenko, V.A. Koptsik, Ferroelectrics 7, 197 (1974)

    Article  ADS  Google Scholar 

  4. Y.S. Zolototrubov, B.A. Strukov, S.A. Taraskin, L.N. Kamysheva, Izv. Akad. Nauk SSSR Seriya Fiz. 39(4), 782–786 (1975)

    CAS  Google Scholar 

  5. M. Chabin, F. Gilletta, Ferroelectrics 8(1), 563–565 (1974)

    Article  ADS  CAS  Google Scholar 

  6. L.N. Korotkov, L.A. Shuvalov, R.M. Fedosyuk, Ferroelectrics 265(1), 99–107 (2002)

    Article  ADS  Google Scholar 

  7. M.E. Lines, A.M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  8. K. Kumar, T.C. Upadhyay, J. Low-Temp. Phys. 207(3), 190–209 (2022)

    Article  ADS  CAS  Google Scholar 

  9. J.M. Wesselinowa, A.T. Apostolov, M.S. Marinov, J. Phys. Condens. Matter 7(8), 1701 (1995)

    Article  ADS  CAS  Google Scholar 

  10. Z.A. Matysina, Eremenko, Russ. Phys. J. 46, 573 (1973)

    Google Scholar 

  11. W. Cochran, Adv. Phys. 9, 387–423 (1960)

    Article  ADS  CAS  Google Scholar 

  12. R. Blinc, V. Smolej, B. Žekš, I. Levstek, B.B. Lavrenčič, Ferroelectrics 7(1), 203–204 (1974)

    Article  ADS  CAS  Google Scholar 

  13. R.R. Levitskii, B.M. Lisnii, O.R. Baran, Condens. Matter Phys. 254(1), 213–227 (2001)

    Google Scholar 

  14. B. Strukov, I. Shnaidshtein, S. Grabovsky, Condens. Matter Phys. 6(1), 450–307 (2007)

    Google Scholar 

  15. G. Sriprakasha, K.P. Rameshb, K. Rukmania, J. Spectrosc. 3, 9 (2013)

    Google Scholar 

  16. M. Deutsch, E. Litov, Ferroelectrics 7(1), 209–211 (1974)

    Article  ADS  CAS  Google Scholar 

  17. S.A. Gridnev, S.A. Kravchenko, Phys. Solid State 42(11), 2137–2141 (2000)

    Article  ADS  CAS  Google Scholar 

  18. V.A. Konovalov, A.M. Strukov, E.A. Shalaev, Soviet J Quantum Electron 14(6), 770 (1984)

    Article  ADS  Google Scholar 

  19. H. Naili, L. Vendier, Solid State Sci. 3(6), 677–687 (2001)

    Article  ADS  CAS  Google Scholar 

  20. J.H. Park, Solid State Commun. 123(6–7), 291–294 (2002)

    Article  ADS  CAS  Google Scholar 

  21. D. Raturi, T.C. Upadhyay, Indian J. Pure Appl. Phys. 54(10), 629–633 (2016)

    Google Scholar 

  22. R.R. Levitskii, B.M. Lisnii, O.R. Baran, Condens. Matter Phys. 3(27), 523–552 (2001)

    Article  ADS  Google Scholar 

  23. B. Stoeger, Struct. Rep. Online 69(11), i73–i74 (2013)

    Article  CAS  Google Scholar 

  24. J. Seliger, Acta Chim. Slov. 58(3), 471–477 (2011)

    CAS  PubMed  Google Scholar 

  25. S. Sullivan, E.L. Thomas, Opt. Commun. 25(1), 125–128 (1978)

    Article  ADS  CAS  Google Scholar 

  26. E. Torijano, R.A. Vargas et al., Solid State Ionics 136, 979–984 (2000)

    Article  Google Scholar 

  27. V.S. Suvorov, A.S. Sonin, I.S. Rez, Sov. Phys. JETP 26, 33–37 (1968)

    ADS  Google Scholar 

  28. L.N. Kamysheva, Y.S. Zolototrubov, S.A. Gridnev, Ferroelectrics 8(1), 559–561 (1974)

    Article  ADS  CAS  Google Scholar 

  29. V. Ramakrishnan, T. Tanaka, Phys. Rev. B 16(1), 422 (1977)

    Article  ADS  CAS  Google Scholar 

  30. S. Ganguli, D. Nath, B.K. Chaudhuri, Phys. Rev. B 21(7), 2937 (1980)

    Article  ADS  CAS  Google Scholar 

  31. V.S. Bist, N.S. Panwar, Chem. Sci. 4(4), 1131–1138 (2015)

    CAS  Google Scholar 

  32. P. Singh, T.C. Upadhyay, Appl. Innov. Res. 2, 32–35 (2020)

    CAS  Google Scholar 

  33. B. Kandpal, K. Kumar, T.C. Upadhyay, Ferroelectrics 616(1), 151–161 (2023)

    Article  ADS  CAS  Google Scholar 

  34. I.M. Khan, A.R. Zargar et al., Ferroelectrics 616(1), 187–199 (2023)

    Article  ADS  CAS  Google Scholar 

  35. D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960)

    Article  ADS  Google Scholar 

  36. Wadhawan, V.K., Gorden and Breach Science Press, India (2000)

Download references

Acknowledgements

The authors thank Professor UC Naithani, Professor SC Bhatt, Dean of the School of Sciences, and Professor PD Semalty for their suggestions and valuable support. Kuldeep Kumar is thankful to Dr Devi Puttar RJC DU for kind suggestions and MOTA-New Delhi for providing a National Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

I declared that I did all the numerical calculations and data extraction in this manuscript, which is not associated with any other author’s work. TCU supervised this work.

Corresponding author

Correspondence to Kuldeep Kumar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Upadhyay, T.C. Thermal-Dependent Ferroelectric Cochran’s Frequency and Dielectric Properties in Arsenate-Type Family of KDP Crystal. J Low Temp Phys 214, 360–384 (2024). https://doi.org/10.1007/s10909-024-03050-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-024-03050-z

Keywords

Navigation