Skip to main content
Log in

Design of the Setup for the AnaBHEL Experiment

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The AnaBHEL experiment aims to detect the analog Hawking radiation emitted by an accelerated relativistic plasma mirror for which the effective event horizon is analogous to that of a black hole, thanks to the equivalence principle. This radiation is composed of a few Hawking photons emitted simultaneously in the infrared band and the ‘partner photons’ in the ultraviolet band. The former is emitted in the opposite direction of the mirror propagation and is redshifted in the laboratory frame. In the AnaBHEL scheme, high-intensity petawatt laser pulses, will be used to produce the relativistic accelerated plasma mirrors from a helium gas jet. Infrared and ultraviolet photons generated by the mirrors will be detected by dedicated superconducting nanowire single-photon detectors (SNSPDs) at very low temperature and by multichannel plates at room temperature, respectively. Details of the setup design are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. S.W. Hawking, Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  2. S.W. Hawking, Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460–2473 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  3. D.N. Page, Information in black hole radiation. Phys. Rev. Lett. 71, 3743 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  4. D.N. Page, Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  5. A. Almheiri, D. Marolf, J. Polchinski, J. Sully, Black holes: Complementarity or firewalls? J. High Energy Phys. 2, 62 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  6. A. Almheiri, D. Marolf, J. Polchinski, D. Stanford, J. Sully, An apologia for firewalls. J. High Energy Phys. 9, 18 (2013)

    Article  ADS  Google Scholar 

  7. P. Chen, Y.C. Ong, D.N. Page, M. Sasaki, D. Yeom, Naked black hole firewalls. Phys. Rev. Lett. 116, 161304 (2016)

    Article  ADS  PubMed  Google Scholar 

  8. K. Skenderis, M. Taylor, The fuzzball proposal for black holes. Phys. Rep. 467, 117 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. P. Chen, Y.C. Ong, D. Yeom, Black hole remnants and the information loss paradox. Phys. Rep. 603, 1–45 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  10. P. Chen et al., (AnaBHEL), “AnaBHEL (analog black hole evaporation via lasers) experiment: concept, design, and status.” Photon. 9, 1003 (2022). (arXiv:2205.12195)

    Article  CAS  Google Scholar 

  11. P. Chen, G. Mourou, Accelerating plasma mirrors to investigate black hole information loss paradox. Phys. Rev. Lett. 118, 045001 (2017). (arXiv:1512.04064)

    Article  ADS  PubMed  Google Scholar 

  12. P. Chen, G. Mourou, Trajectory of a flying plasma mirror traversing a target with density gradient. Phys. Plasmas 27, 123106 (2020). (arXiv:2004.10615)

    Article  ADS  CAS  Google Scholar 

  13. Y.-K. Liu (on behalf of the AnaBHEL collaboration) invited talk at LPHYS’23 31st Annual International Laser Physics Workshop seminar 9 at 10:25–10:50 https://www.lasphys.com/workshops/lasphys23/

  14. J. Bortfeldt et al., NIM A 903(21), 317–325 (2018)

    Article  ADS  CAS  Google Scholar 

  15. H.-Y. Wu, PhD thesis at National Taiwan University (2023), http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/89977https://doi.org/10.6342/NTU202303179

  16. V.B. Verma et al., Single-photon detection in the mid-infrared up to 10 μm wavelength using tungsten silicide superconducting nanowire detectors. APL Photon. 6(5), 056101 (2021)

    Article  ADS  CAS  Google Scholar 

  17. K. Bergren, Superconducting nanostrip detectors: from quantum communications to dark-matter search. J. Low Temp. Phys. (Submitted)

  18. O.V. Lounasmaa, Experimental Principles and Methods Below 1K (Academic Press Inc, 1997)

    Google Scholar 

  19. Infrared Bandpass Filters – IR Bandpass Filters | Edmund Optics => https://www.edmundoptics.fr/p/100m-cwl-250nm-diameter-050m-fwhm-ir-banpass-filter/45231/

  20. X.-F. Navick et al., A tunable blackbody polarized infrared source for the BBOP camera. J. Low Temp. Phys.(Submitted)

  21. A.S. Pirozhkov et al., Approaching the diffraction-limited, bandwidth-limited Petawatt. Opt. Exp. 25(17), 20486 (2017)

    Article  CAS  Google Scholar 

  22. H. Kiriyama et al., Laser output performance and temporal quality enhancement at the J-KAREN-P Petawatt laser facility. Photonics 10, 997 (2023)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Consortia

Contributions

XN wrote the main manuscript text and prepared figure 2. Figure 1 has been produced within the AnaBHEL collaboration (see references). Many members of the collaboration reviewed the present paper

Corresponding author

Correspondence to Xavier-François Navick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navick, XF., for the AnaBHEL Experiment. Design of the Setup for the AnaBHEL Experiment. J Low Temp Phys 214, 158–163 (2024). https://doi.org/10.1007/s10909-023-03032-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03032-7

Keywords

Navigation