Skip to main content
Log in

Non-Markovian Stochastic Gross–Pitaevskii Equation for the Exciton–Polariton Bose–Einstein Condensate

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, a non-Markovian version of the Gross–Pitaevskii equation is proposed to describe the condensate formation in an exciton–polariton system subject to incoherent pumping. By introducing spatially delta-correlated noise terms, we observe a transition from a spatially ordered phase to a disordered one with simultaneous density reduction as the temperature increases. Above the transition temperature, the uniform condensate breaks up into multiple irregularly located separate dense spots. Using the Gabor transform, we demonstrate condensate decoherence with increasing temperature, which is accompanied by the transition from narrow-band to broadband spectral density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2007)

  2. A.R. Kolovsky, D.L. Shepelyansky, Ann. Phys. Berlin 531, 1900231 (2019)

    Article  ADS  CAS  Google Scholar 

  3. H.T.C. Stoof, M.J. Bijlsma, J. Low. Temp. Phys. 124, 431 (2001)

    Article  ADS  CAS  Google Scholar 

  4. S.P. Cockburn, N.P. Proukakis, Laser Phys. 19, 558 (2009)

    Article  ADS  CAS  Google Scholar 

  5. I. De Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017)

    Article  ADS  Google Scholar 

  6. S. Nakajima, Progr. Theor. Phys. 20, 948 (1958)

    Article  ADS  Google Scholar 

  7. R. Zwanzig, J. Chem. Phys. 83, 1338 (1960)

    Article  ADS  Google Scholar 

  8. H.-P. Breuer, Phys. Rev. A 70, 012106 (2004)

    Article  ADS  Google Scholar 

  9. H.-P. Breuer, E.-M. Laine, J. Piilo, B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  10. L. Diósi, W.T. Strunz, Phys. Lett. A 235, 569 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.A. Elistratov, Yu.E. Lozovik, Phys. Rev. B 93, 014525 (2018)

    Article  ADS  Google Scholar 

  12. Y. Xue, X. Ma, A. Kavokin et al., Phys. Rev. Res. 3, 013099 (2021)

    Article  CAS  Google Scholar 

  13. S. Kim et al., Phys. Rev. X 6, 011026 (2016)

    Google Scholar 

  14. J. Kasprzak et al., Nature 443, 409 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. V.B. Timofeev, Semiconductors 46, 843 (2012)

    Article  ADS  Google Scholar 

  16. F. Manni et al., PRL 107, 106401 (2011)

    Article  ADS  CAS  Google Scholar 

  17. F. Baboux et al., Optica 5(10), 1163–1170 (2018)

    Article  ADS  Google Scholar 

  18. M. Pieczarka et al., Nat. Commun. 11, 429 (2020)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. S.S. Gavrilov, Phys. Uspekhi 63(2), 123 (2020)

    Article  ADS  CAS  Google Scholar 

  20. A.D. Alliluev, D.V. Makarov, N.A. Asriyan, A.A. Elistratov, Yu.E. Lozovik, Phys. Lett. A 453, 128492 (2022)

    Article  CAS  Google Scholar 

  21. D.V. Makarov, A.A. Elistratov, Yu.E. Lozovik, Phys. Lett. A 384, 126942 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  22. X. Li, Phys. Lett. A 387, 127036 (2021)

    Article  CAS  Google Scholar 

  23. R. Dashen, J. Math. Phys. 20, 894 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  24. M. De Giorgi et al., Phys. Rev. Lett. 112, 113602 (2014)

    Article  ADS  PubMed  Google Scholar 

  25. A. Opala, M. Pieczarka, M. Matuszewski, Phys. Rev. B 98, 195312 (2018)

    Article  ADS  CAS  Google Scholar 

  26. C. Tian et al., Nano Lett. 22, 3026 (2022)

  27. IYu. Chestnov et al., Sci. Rep. 22, 3026 (2022)

    Google Scholar 

  28. Z.A. Cochran, A. Saxena, Y.N. Joglekar, Phys. Rev. Res. 3, 013135 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous referees for valuable comments and to M. Uleysky for the assistance in the preparation of figures. The work of A. Alliluev and D. Makarov is supported by the Laboratory of Nonlinear Hydrophysics and Natural Hazards of the V.I.Il’ichev Pacific Oceanological Institute of the Far Eastern Branch of the Russian Academy of Sciences, within the project of the Ministry of Science and Higher Education of the Russian Federation, agreement number 075-15-2022-1127. N. Asriyan is supported by the foundation for the advancement of theoretical physics and mathematics “Basis”. Yu. Lozovik’s work is supported by the Russian Science Foundation (RSF) in the scope of the project 23-12-00115.

Author information

Authors and Affiliations

Authors

Contributions

YE supervised this work. DV, NA and AA contributed to the theoretical part of the paper. AD and DV performed the numerical simulations. DV and NA contributed to writiing of the text. AD prepared illustrations for the paper.

Corresponding author

Correspondence to Denis V. Makarov.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alliluev, A.D., Makarov, D.V., Asriyan, N.A. et al. Non-Markovian Stochastic Gross–Pitaevskii Equation for the Exciton–Polariton Bose–Einstein Condensate. J Low Temp Phys 214, 331–343 (2024). https://doi.org/10.1007/s10909-023-03027-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03027-4

Keywords

Navigation