Skip to main content
Log in

Monte Carlo Simulations Revealing Ground State Characteristics and Magnetic Hysteresis in Perylene-Like Nanostructure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The current study is motivated by the interest in understanding the magnetic properties of Perylene-like nanostructures and to explore their behavior, using Monte Carlo simulations. The investigation begins by examining the ground state phase diagrams, aiming to identify stable spin configurations under different physical parameters. Furthermore, the study investigates magnetic hysteresis cycles, focusing on the presence of multi-loops and multiple magnetization plateaus. The coercive and saturation fields were carefully analyzed in relation to exchange coupling interactions, temperature, and crystal field parameters. By delving these magnetic characteristics, this research sheds light on the intricate nature of Perylene-like nanostructures and provides insights into their potential applications in the field of magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The investigation was made by Monte Carlo simulations under the Metropolis algorithm by a Fortran code.

References

  1. T. Hu, X. Mei, Y. Wang, X. Weng, R. Liang, M. Wei, Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci. Bull. 64(22), 1707–1727 (2019). https://doi.org/10.1016/j.scib.2019.09.021

    Article  CAS  Google Scholar 

  2. P. Huang, P. Zhang, S. Xu, H. Wang, X. Zhang, H. Zhang, Recent advances in two-dimensional ferromagnetism: materials synthesis, physical properties and device applications. Nanoscale 12(4), 2309–2327 (2020). https://doi.org/10.1039/C9NR08890C

    Article  CAS  PubMed  Google Scholar 

  3. H. Jin et al., Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118(13), 6337–6408 (2018). https://doi.org/10.1021/acs.chemrev.7b00689

    Article  CAS  PubMed  Google Scholar 

  4. P. Kumar, S. Singh, S.A.R. Hashmi, K.-H. Kim, MXenes: Emerging 2D materials for hydrogen storage. Nano Energy 85, 105989 (2021). https://doi.org/10.1016/j.nanoen.2021.105989

    Article  CAS  Google Scholar 

  5. M. Naguib, V.N. Mochalin, M.W. Barsoum, Y. Gogotsi, 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26(7), 992–1005 (2014). https://doi.org/10.1002/adma.201304138

    Article  CAS  PubMed  Google Scholar 

  6. S. Yan, X. Zhu, J. Dong, Y. Ding, S. Xiao, 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics 9(7), 1877–1900 (2020). https://doi.org/10.1515/nanoph-2020-0074

    Article  CAS  Google Scholar 

  7. X. Bao, Q. Ou, Z. Xu, Y. Zhang, Q. Bao, H. Zhang, Band structure engineering in 2D materials for optoelectronic applications. Adv. Mater. Technol. 3(11), 1800072 (2018). https://doi.org/10.1002/admt.201800072

    Article  CAS  Google Scholar 

  8. R. Beiranvand, S. Valedbagi, Electronic and optical properties of h-BN nanosheet: a first principles calculation. Diam. Relat. Mater. 58, 190–195 (2015). https://doi.org/10.1016/j.diamond.2015.07.008

    Article  ADS  CAS  Google Scholar 

  9. H. Tian et al., Optoelectronic devices based on two-dimensional transition metal dichalcogenides. Nano Res. 9(6), 1543–1560 (2016). https://doi.org/10.1007/s12274-016-1034-9

    Article  CAS  Google Scholar 

  10. J. Wang, F. Ma, W. Liang, R. Wang, M. Sun, Optical, photonic and optoelectronic properties of graphene, h-BN and their hybrid materials. Nanophotonics 6(5), 943–976 (2017). https://doi.org/10.1515/nanoph-2017-0015

    Article  CAS  Google Scholar 

  11. K.I. Bolotin, Electronic transport in graphene: towards high mobility. in Graphene. (Elsevier, 2014), pp. 199–227. https://doi.org/10.1533/9780857099334.3.199

  12. K.I. Bolotin et al., Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146(9–10), 351–355 (2008). https://doi.org/10.1016/j.ssc.2008.02.024

    Article  ADS  CAS  Google Scholar 

  13. G. Boschetto, S. Carapezzi, A. Todri-Sanial, Graphene and carbon nanotubes for electronics nanopackaging. IEEE Open J. Nanotechnol. 2, 120–128 (2021). https://doi.org/10.1109/OJNANO.2021.3127652

    Article  Google Scholar 

  14. Z. Lou, Z. Liang, G. Shen, Photodetectors based on two dimensional materials. J. Semicond. 37(9), 091001 (2016). https://doi.org/10.1088/1674-4926/37/9/091001

    Article  CAS  Google Scholar 

  15. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee, Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20(3), 116–130 (2017). https://doi.org/10.1016/j.mattod.2016.10.002

    Article  CAS  Google Scholar 

  16. H. Tao et al., Two-dimensional materials for energy conversion and storage. Prog. Mater. Sci. 111, 100637 (2020). https://doi.org/10.1016/j.pmatsci.2020.100637

    Article  CAS  Google Scholar 

  17. S. Kumar, M. Nehra, D. Kedia, N. Dilbaghi, K. Tankeshwar, K.-H. Kim, Carbon nanotubes: a potential material for energy conversion and storage. Prog. Energy Combust. Sci. 64, 219–253 (2018). https://doi.org/10.1016/j.pecs.2017.10.005

    Article  Google Scholar 

  18. J. Nan et al., Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17(9), 1902085 (2021). https://doi.org/10.1002/smll.201902085

    Article  CAS  Google Scholar 

  19. T. Kaehler, M. Bolte, H. Lerner, M. Wagner, Introducing perylene as a new member to the azaborine family. Angew. Chem. 131(33), 11501–11506 (2019). https://doi.org/10.1002/ange.201905823

    Article  ADS  Google Scholar 

  20. D. Vermeulen et al., Charge transport properties of perylene–TCNQ crystals: the effect of stoichiometry. J. Phys. Chem. C 118(42), 24688–24696 (2014). https://doi.org/10.1021/jp508520x

    Article  CAS  Google Scholar 

  21. J.L. Segura, H. Herrera, P. Bäuerle, Oligothiophene-functionalized naphthalimides and perylene imides: design, synthesis and applications. J. Mater. Chem. 22(18), 8717 (2012). https://doi.org/10.1039/c2jm16690a

    Article  CAS  Google Scholar 

  22. C. Li, H. Wonneberger, Perylene imides for organic photovoltaics: yesterday, today, and tomorrow. Adv. Mater. 24(5), 613–636 (2012). https://doi.org/10.1002/adma.201104447

    Article  CAS  PubMed  Google Scholar 

  23. I.A. Fedorov, Y.N. Zhuravlev, V.P. Berveno, Structural and electronic properties of perylene from first principles calculations. J. Chem. Phys. 138(9), 094509 (2013). https://doi.org/10.1063/1.4794046

    Article  ADS  CAS  PubMed  Google Scholar 

  24. X.-W. Quan et al., Phase diagrams of kekulene-like nanostructure. Phys. E Low-Dimens. Syst. Nanostruct. 114, 113574 (2019). https://doi.org/10.1016/j.physe.2019.113574

    Article  CAS  Google Scholar 

  25. C.-L. Zou, D.-Q. Guo, F. Zhang, J. Meng, H.-L. Miao, W. Jiang, Magnetization, the susceptibilities and the hysteresis loops of a borophene structure. Phys. E Low-Dimens. Syst. Nanostruct. 104, 138–145 (2018). https://doi.org/10.1016/j.physe.2018.07.028

    Article  ADS  CAS  Google Scholar 

  26. N. Si, F. Zhang, W. Jiang, Y.-L. Zhang, Magnetic and thermodynamics properties graphene monolayer with defects. Phys. A Stat. Mech. Appl. 510, 641–648 (2018). https://doi.org/10.1016/j.physa.2018.07.018

    Article  CAS  Google Scholar 

  27. X. Shi, Y. Qi, Ferrimagnetic ordering behaviors and compensation temperatures in the Fe II Fe III bimetallic oxalates: effective-field theory. Phys. B Condens. Matter 495, 117–122 (2016). https://doi.org/10.1016/j.physb.2016.05.001

    Article  ADS  CAS  Google Scholar 

  28. A. Boubekri, Z. Elmaddahi, A. Farchakh, M. El Hafidi, Critical and compensation temperature in a ferrimagnetic mixed spin Ising trilayer nano-graphene superlattice. Phys. B Condens. Matter 626, 413526 (2022). https://doi.org/10.1016/j.physb.2021.413526

    Article  CAS  Google Scholar 

  29. R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, L. Bahmad, Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure. Phys. B Condens. Matter 472, 19–24 (2015). https://doi.org/10.1016/j.physb.2015.05.010

    Article  ADS  CAS  Google Scholar 

  30. Z. Fadil et al., Blume-Capel model of a nano-Stanene like structure with RKKY interactions: Monte Carlo simulations. Phase Transit. 93(6), 561–572 (2020). https://doi.org/10.1080/01411594.2020.1758320

    Article  CAS  Google Scholar 

  31. H. Wu, W. Wang, B. Li, M. Yang, S. Yang, F. Wang, Magnetic properties in graphene-like nanoisland bilayer: Monte Carlo study. Phys. E Low-Dimens. Syst. Nanostruct. 112, 86–95 (2019). https://doi.org/10.1016/j.physe.2019.04.012

    Article  ADS  CAS  Google Scholar 

  32. D. Lv, Y. Diao, F. Wang, D. Zhang, Thermodynamic behaviors and hysteresis loops of an edge-modified Kekulene monolayer: a Monte Carlo study. Phys. B Condens. Matter 653, 414700 (2023). https://doi.org/10.1016/j.physb.2023.414700

    Article  CAS  Google Scholar 

  33. Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad, W. Ousi Benomar, Magnetization and compensation behaviors in a mixed spins (7/2, 1) anti-ferrimagnetic ovalene nano-structure. Superlattices Microstruct. 134, 106224 (2019). https://doi.org/10.1016/j.spmi.2019.106224

    Article  CAS  Google Scholar 

  34. K.-L. Shi, X.-W. Quan, W. Jiang, Study on the magnetic and hysteresis behaviors in a bilayer graphene-like ring with edge decorated. Phys. Scr. 98(1), 015822 (2023). https://doi.org/10.1088/1402-4896/aca2f1

    Article  ADS  CAS  Google Scholar 

  35. R. El Fdil et al., Electronic, magnetic and magneto-caloric properties in intermetallic compound PrSi. Phase Transit. 93(12), 1123–1131 (2020). https://doi.org/10.1080/01411594.2020.1844201

    Article  CAS  Google Scholar 

  36. R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, E.K. Hlil, Monte Carlo simulation study of magnetocaloric effect in NdMnO 3 perovskite. J. Magn. Magn. Mater. 401, 91–95 (2016). https://doi.org/10.1016/j.jmmm.2015.10.019

    Article  ADS  CAS  Google Scholar 

  37. M. Abbasi, R. El Fdil, E. Salmani, H. Ez-Zahraouy, Evaluating the properties of the intermetallic compound HoN for magnetic refrigerator application: combined DFT and Monte Carlo simulation. Solid State Commun. 350, 114737 (2022). https://doi.org/10.1016/j.ssc.2022.114737

    Article  CAS  Google Scholar 

  38. N. El Mekkaoui et al., Ground state and critical behavior of a core/shell kekulene-like structure by Monte Carlo study. Solid State Commun. 327, 114185 (2021). https://doi.org/10.1016/j.ssc.2021.114185

    Article  CAS  Google Scholar 

  39. R. El Fdil, Z. Fadil, E. Salmani, C. Jayprakash Raorane, H. Ez-Zahraouy, Magnetic characteristics of the ferrimagnetic bilayer MXene-like nanostructure with interlayer exchange interactions: Monte Carlo study. J. Magn. Magn. Mater. 580, 170967 (2023). https://doi.org/10.1016/j.jmmm.2023.170967

    Article  CAS  Google Scholar 

  40. A. Jabar, R. Masrour, Magnetic properties of armchair graphene nanoribbons: a Monte Carlo study. Chin. J. Phys. 64, 1 (2020). https://doi.org/10.1016/j.cjph.2019.11.030

    Article  CAS  Google Scholar 

  41. A. Jabar, R. Masrour, Magnetic properties of bilayer graphene: a Monte Carlo study. J. Comput. Electron. 16, 12 (2017). https://doi.org/10.1007/s10825-016-0930-2

    Article  CAS  Google Scholar 

  42. B. Boughazi, M. Kerouad, A. Kotri, Theoretical study of the magnetic properties of a ferrimagnetic graphene-like nanoribbon: Monte Carlo treatment. ECS J. Solid State Sci. Technol. 11, 051005 (2022). https://doi.org/10.1149/2162-8777/ac6b52

    Article  ADS  CAS  Google Scholar 

  43. M. Qajjour, N. Maaouni et al., Dilution effect on the compensation temperature in a honeycomb nano-lattice: Monte Carlo study. Chin. J. Phys. 63, p36 (2020). https://doi.org/10.1016/j.cjph.2019.09.038

    Article  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Development Program (S3060516) funded by the Ministry of SMEs and Startups (MSS, Korea) in 2021. In addition, the work was also, funded by the Research Supporting Project Number (RSPD2023R664) King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Not Applicable.

Corresponding authors

Correspondence to Z. Fadil or Seong-Cheol Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of interest

The authors confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadil, Z., Haldhar, R., Raorane, C.J. et al. Monte Carlo Simulations Revealing Ground State Characteristics and Magnetic Hysteresis in Perylene-Like Nanostructure. J Low Temp Phys 214, 314–330 (2024). https://doi.org/10.1007/s10909-023-03024-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03024-7

Keywords

Navigation