Skip to main content
Log in

Collective Excitation of Bosonic Quantum Hall State

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The recent developments in the theory of rapidly rotating Bose atoms have been reviewed in this article. Rotation leads to the development of quantized vortices that cluster into a vortex array, exactly to how superfluid helium behaves. Theoretically, a number of strongly correlated phases are projected to exist in this domain, which might be thought of as bosonic counterparts of fractional quantum Hall effect (FQHE). It is now possible for bosons associating with a short-range interaction to exhibit a FQHE, because the system of neutral bosons in a fast-rotating atomic trap is analogous to charged bosons placed in a fictitious magnetic field. The neutral collective spin-conserving and spin-flip excitation for the rotating ultra-cold dilute Bose atoms in the FQHE domain are being discussed. We have introduced a realistic interaction between the Bose particles together with long-range interaction and presented a short review article about various fractional quantum Hall states and their spin-conserving and spin-reversed collective modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availibility

There are no data associated in the manuscript.

References

  1. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, W. Ketterle, Bose–Einstein condensation in a gas of sodium atoms. Phys. Rev. Lett. 75, 3969 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  2. W. Ketterle, Experimental studies of Bose–Einstein condensation. Phys. Today 52(12), 30 (1999)

    Article  ADS  CAS  Google Scholar 

  3. J.R. Abo-Shaeer, C. Raman, J.M. Vogels, W. Ketterle, Observation of vortex lattices in Bose–Einstein condensates. Science 292, 476 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. E. Hodby, G. Hechenblaikner, S.A. Hopkins, O.M. Marago, C.J. Foot, Vortex nucleation in Bose–Einstein condensates in an oblate, purely magnetic potential. Phys. Rev. Lett. 88, 010405 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. N.R. Cooper, N.K. Wilkin, J.M.F. Gunn, Quantum phases of vortices in rotating Bose–Einstein condensates. Phys. Rev. Lett. 87, 120405 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  6. J.R. Ensher, D.S. Jin, M.R. Matthews, C.E. Wieman, E.A. Cornell, Bose–Einstein condensation in a dilute gas: measurement of energy and ground-state occupation. Phys. Rev. Lett. 77, 4984 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  7. M.R. Matthews, B.P. Anderson, P.C. Haljan, D.S. Hall, C.E. Wieman, E.A. Cornell, Vortices in a Bose–Einstein condensate. Phys. Rev. Lett. 83, 2498 (1999)

    Article  ADS  CAS  Google Scholar 

  8. K.W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred Bose–Einstein condensate. Phys. Rev. Lett. 84, 806–809 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  9. W. Bao, H. Wang, An efficient and spectrally accurate numerical method for computing dynamics of rotating Bose–Einstein condensates. J. Comput. Phys. 217, 612 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  10. C. Cercignani, E. Gabetta, Transport Phenomena and Kinetic Theory, Chap. 10 (Birkhauser, Boston, 2007)

  11. S. Sahu, D. Majumder, Bose–Einstein condensation in nonuniform rotation, arXiv:1805.02417v2 [physics.atom-ph] (2018)

  12. R.E. Prange, S.M. Girvin (eds.), The Quantum Hall Effect, 2nd edn. (Springer, Berlin, 1990)

    Google Scholar 

  13. K.V. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  14. D.C. Tsui, H.L. Stormer, A.C. Gossard, Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559 (1982)

    Article  ADS  CAS  Google Scholar 

  15. R.B. Laughlin, Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632 (1981)

    Article  ADS  Google Scholar 

  16. H.L. Stormer, Nobel lecture: the fractional quantum Hall effect. Rev. Mod. Phys. 71, 875 (1999)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. C.-X. Liu, S.-C. Zhang, X.-L. Qi, The quantum anomalous Hall effect: theory and experiment. Annu. Rev. Condens. Matter Phys. 7, 301–321 (2015)

    Article  ADS  CAS  Google Scholar 

  18. H.L. Stormer, Two-dimensional electron correlation in high magnetic fields. Phys. B 177, 401 (1992)

    Article  ADS  Google Scholar 

  19. J.K. Jain, Composite-fermion approach for the fractional quantum Hall effect. Phys. Rev. Lett. 63, 199 (1989)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. J.K. Jain, Theory of the fractional quantum Hall effect. Phys. Rev. B 41, 7653 (1990)

    Article  ADS  CAS  Google Scholar 

  21. J.K. Jain, Composite Fermions (Cambridge University Press), http://www.cambridge.org/9780521862325

  22. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose–Einstein condensation in a dilute atomic vapor. Science 269(5221), 198 (1995)

    Article  ADS  CAS  PubMed  Google Scholar 

  23. M.A. Norcia, F. Ferlaino, Developments in atomic control using ultracold magnetic lanthanides. Nat. Phys. 17, 1349–1357 (2021)

    Article  CAS  Google Scholar 

  24. Y. Wei, F. Macheda, Z. Zhao, T. Tse, E. Plekhanov, N. Bonini, C. Weber, High-temperature superconductivity in the lanthanide hydrides at extreme pressures. Appl. Sci. 12, 874 (2022)

    Article  CAS  Google Scholar 

  25. F. Böttcher, J.N. Schmidt, J. Hertkorn, K.S.H. Ng, S.D. Graham, M. Guo, T. Langen, T. Pfau, New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Prog. Phys. 84, 012403 (2020)

    Article  ADS  Google Scholar 

  26. C.-C. Chang, N. Regnault, T. Jolicoeur, J.K. Jain, Composite fermionization of bosons in rapidly rotating atomic traps. Phys. Rev. A 72, 013611 (2005)

    Article  ADS  Google Scholar 

  27. N.R. Cooper, N.K. Wilkin, Composite fermion description of rotating Bose–Einstein condensates. Phys. Rev. B 60, R16279 (1999)

    Article  ADS  CAS  Google Scholar 

  28. V. Bretin, Z. Hadzibabic, J. Dalibard, S. Stock, B. Battelier, Bose–Einstein condensates in fast rotation. Laser Phys. Lett. 2, 6 (2005)

    Google Scholar 

  29. A.J. Leggett, Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307 (2001)

    Article  ADS  CAS  Google Scholar 

  30. N. Regnault, T. Jolicoeur, Quantum Hall fractions in rotating Bose–Einstein condensates. Phys. Rev. Lett. 91, 030402 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  31. M. Indra, D. Majumder, Collective spin density excitation of fractional quantum Hall states in dilute ultra-cold Bose atoms. Solid State Commun. 306, 113796 (2020)

    Article  CAS  Google Scholar 

  32. M. Indra, D. Jain, S. Mondal, Double roton-minima in bosonic fractional quantum Hall states. Phys. Scr. 98, 065948 (2023)

    Article  ADS  Google Scholar 

  33. O. Ciftja, Monte Carlo study of Bose Laughlin wave function for filling factors 1/2, 1/4 and 1/6. Europhys. Lett. 74(3), 486 (2006)

    Article  ADS  CAS  Google Scholar 

  34. Y. Zhang, M.E. Mossman, T. Busch, P. Engels, C. Zhang, Properties of spin–orbit-coupled Bose–Einstein condensates. Front. Phys. 11, 118103 (2016)

    Article  ADS  Google Scholar 

  35. H.-J. Miesner, D.M. Stamper-Kurn, J. Stenger, S. Inouye, A.P. Chikkatur, W. Ketterle, Observation of metastable states in spinor Bose–Einstein condensates. Phys. Rev. Lett. 82, 2228 (1999)

    Article  ADS  CAS  Google Scholar 

  36. G. Modugno, M. Modugno, F. Riboli, G. Roati, M. Inguscio, Two atomic species superfluid. Phys. Rev. Lett. 89, 190404 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, F. Minardi, M. Inguscio, Double species Bose–Einstein condensate with tunable interspecies interactions. Phys. Rev. Lett. 100, 210402 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. S.B. Papp, J.M. Pino, C.E. Wieman, Tunable miscibility in a dual-species Bose–Einstein condensate. Phys. Rev. Lett. 101, 040402 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. W. Ying-Hai, J.K. Jain, Quantum Hall effect of two-component bosons at fractional and integral fillings. Phys. Rev. B 87, 245123 (2013)

    Article  ADS  Google Scholar 

  40. G. Modugno, G. Ferrari, G. Roati, R.J. Brecha, A. Simoni, M. Inguscio, Bose–Einstein condensation of potassium atoms by sympathetic cooling. Science 294(5545), 1320–22 (2001)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. N. Regnault, T. Jolicoeur, Quantum Hall fractions for spinless bosons. Phys. Rev. B 69, 235309 (2004)

    Article  ADS  Google Scholar 

  42. N. Regnault, C.C. Chang, T. Jolicoeur, J.K. Jain, Composite fermion theory of rapidly rotating two-dimensional bosons. J. Phys. B Atom. Mol. Opt. Phys. 39, S89 (2006)

    Article  ADS  CAS  Google Scholar 

  43. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  CAS  Google Scholar 

  44. L. Pitaevskii, S. Stringari, Bose–Einstein Condensation and Superfluidity (Oxford University Press, Oxford, 2016)

    Book  Google Scholar 

  45. V.M. Prez-Garca, H. Michinel, J.I. Cirac, M. Lewenstein, P. Zoller, Dynamics of Bose–Einstein condensates: variational solutions of the Gross–Pitaevskii equations. Phys. Rev. A 56, 1424 (1996)

    Article  ADS  Google Scholar 

  46. W. Bao, D. Jaksch, P.A. Markowich, Numerical solution of the Gross–Pitaevskii equation for Bose–Einstein condensation. J. Comput. Phys. 187, 318 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  47. A.J. Morris, P. López Ríos, R.J. Needs, Ultracold atoms at unitarity within quantum Monte Carlo methods. Phys. Rev. A 81, 033619 (2010)

  48. J. Carlson, S.Y. Chang, V.R. Pandharipande, K.E. Schmidt, Superfluid Fermi gases with large scattering length. Phys. Rev. Lett. 91, 050401 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  49. D. Das, S. Sahu, D. Majumder, Roton minimum at \(\nu =1/2\) filled fractional quantum Hall effect of Bose particles. Phys. B Condens. Matter 550, 96–99 (2018)

    Article  ADS  CAS  Google Scholar 

  50. A.H. MacDonald, Introduction to the Physics of the Quantum Hall Regime, arXiv:cond-mat/9410047 (1994)

  51. S.H. Simon, E.H. Rezayi, N.R. Cooper, Pseudopotentials for multiparticle interactions in the quantum Hall regime. Phys. Rev. B 75, 195306 (2007)

    Article  ADS  Google Scholar 

  52. J.M. Leinaas, J. Myrheim, On the theory of identical particles. Nuovo Cimento Soc. Ital. Fis. B 37, 1 (1977)

  53. F. Wilczek, Magnetic flux, angular momentum, and statistics. Phys. Rev. Lett. 48, 1144 (1982)

    Article  ADS  Google Scholar 

  54. B. Chung, T. Jolicœur, Fermions out of dipolar bosons in the lowest Landau level. Phys. Rev. A 77, 043608 (2008)

    Article  ADS  Google Scholar 

  55. F.D.M. Haldane, Fractional quantization of the Hall effect: a hierarchy of incompressible quantum fluid states. Phys. Rev. Lett. 51, 605 (1983)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  56. F.D.M. Haldane, E.H. Rezayi, Finite-size studies of the incompressible state of the fractionally quantized Hall effect and its excitations. Phys. Rev. Lett. 54, 237 (1985)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. J.K. Jain, R.K. Kamilla, Quantitative study of large composite-fermion systems. Phys. Rev. B 55, R4895 (1997)

    Article  ADS  CAS  Google Scholar 

  58. R.K. Kamilla, J.K. Jain, S.M. Girvin, Fermi-sea-like correlations in a partially filled Landau level. Phys. Rev. B 56, 12411 (1997)

    Article  ADS  CAS  Google Scholar 

  59. M. Indra, D. Das, D. Majumder, Study of partially polarized fractional quantum Hall states. Phys. Lett. A 382(40), 2984–2988 (2018)

    Article  ADS  CAS  Google Scholar 

  60. D. Majumder, S.S. Mandal, J.K. Jain, Collective excitations of composite fermions across multiple \(\Lambda\)-levels. Nat. Phys. 5, 403 (2009)

    Article  CAS  Google Scholar 

  61. A. Sudhansu, S. Mandal, J.K. Jain, Low-energy spin rotons in the fractional quantum Hall effect. Phys. Rev. B 63, 201310(R) (2001)

  62. S.S. Mandal, J.K. Jain, Theoretical search for nested quantum Hall effect of composite fermions. Phys. Rev. B 66, 155302 (2002)

    Article  ADS  Google Scholar 

  63. R. Beinke, L.S. Cederbaum, O.E. Alon, Enhanced many-body effects in the excitation spectrum of a weakly interacting rotating Bose–Einstein condensate. Phys. Rev. A 98, 053634 (2018)

    Article  ADS  Google Scholar 

  64. T. Nakajima, M. Ueda, Energy gaps and Roton structure above the \(\nu =1/2\) laughlin state of a rotating dilute Bose–Einstein condensate. Phys. Rev. Lett. 91, 140401 (2003)

    Article  ADS  PubMed  Google Scholar 

  65. C. Kallin, B.I. Halperin, Excitations from a filled Landau level in the two-dimensional electron gas. Phys. Rev. B 30, 5655 (1984)

    Article  ADS  Google Scholar 

  66. H.D.M. Davies, J.C. Harris, J.F. Ryan, A.J. Turberfield, Spin and charge density excitations and the collapse of the fractional quantum Hall state at \(\nu =1/3\). Phys. Rev. Lett. 78, 4095 (1997)

    Article  ADS  CAS  Google Scholar 

  67. F. Chevy, K.W. Madison, J. Dalibard, Measurement of the angular momentum of a rotating Bose–Einstein condensate. Phys. Rev. Lett. 85, 2223 (2000)

    Article  ADS  CAS  PubMed  Google Scholar 

  68. R. Bhat, M. Kramer, J. Cooper, M. Holland, Hall effects in Bose–Einstein condensates in a rotating optical lattice. Phys. Rev. A 76, 043601 (2007)

    Article  ADS  Google Scholar 

  69. R.N. Palmer, D. Jaksch, High-field fractional quantum Hall effect in optical lattices. Phys. Rev. Lett. 96, 180407 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  70. D. Jaksch, P. Zoller, Creation of effective magnetic fields in optical lattices: the Hofstadter butterfly for cold neutral atoms. New J. Phys. 5, 56 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors, Moumita wants to thank the institute postdoctoral fellowship grant (IIT Bombay) for her financial help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moumita Indra.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Indra, M., Mondal, S. Collective Excitation of Bosonic Quantum Hall State. J Low Temp Phys 214, 294–313 (2024). https://doi.org/10.1007/s10909-023-03023-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03023-8

Keywords

Navigation