Skip to main content
Log in

Development of MKIDs in the Optical and Near-Infrared Bands for SPIAKID

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

SpectroPhotometric Imaging in Astronomy with Kinetic Inductance Detectors (SPIAKID) aims at designing, building, and deploying on the sky a spectrophotometric imager based on microwave kinetic inductance detectors (MKIDs) in the optical and near-infrared bands. MKIDs show a fast response and the ability to resolve photon energy compared to the conventional Charge-coupled Devices (CCDs). In this paper, we present the design and simulation of the MKID arrays for SPIAKID. The detectors consist of four arrays with each array of 20,000 lumped-element pixels, and each array will be read with 10 readout lines. The meander material of the resonators is trilayer TiN/Ti/TiN to have better uniformity of the critical temperature across the array. We also present the measurement result for a test array with \(30\times 30\) pixels which is a subset of the designed 2000-pixel array to verify the design and fabrication. The current measured best energy-resolving power \(R = E/\Delta E\) is 2.4 at \(\lambda = 405\,\text {nm}\) and the current medium R is around 1.7. We have also observed that the response of the TiN/Ti/TiN is much smaller than expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. B. Willman, M.R. Blanton, A.A. West, J.J. Dalcanton, D.W. Hogg, D.P. Schneider, N. Wherry, B. Yanny, J. Brinkmann, A new milky way companion: unusual globular cluster or extreme dwarf satellite? Astron. J. 129(6), 2692 (2005). https://doi.org/10.1086/430214

    Article  ADS  Google Scholar 

  2. B. Willman, J.J. Dalcanton, D. Martinez-Delgado, A.A. West, M.R. Blanton, D.W. Hogg, J.C. Barentine, H.J. Brewington, M. Harvanek, S.J. Kleinman, J. Krzesinski, D. Long, J.E.H. Neilsen, A. Nitta, S.A. Snedden, A new milky way dwarf galaxy in URSA major. Astrophys. J. 626(2), 85 (2005). https://doi.org/10.1086/431760

    Article  Google Scholar 

  3. R.J. Bouwens, G.D. Illingworth, P.A. Oesch, M. Trenti, I. Labbé, M. Franx, M. Stiavelli, C.M. Carollo, P. Dokkum, D. Magee, Lower-luminosity galaxies could reionize the universe: Very steep faint-end slopes to the UV luminosity functions at z \(lt\) 5–8 from the hudf09 wfc3/ir observations. Astrophys. J. Lett. 752(1), 5 (2012). https://doi.org/10.1088/2041-8205/752/1/L5

    Article  ADS  Google Scholar 

  4. K. Bechtol, A. Drlica-Wagner, E. Balbinot, A. Pieres, J.D. Simon, B. Yanny, B. Santiago, R.H. Wechsler, J. Frieman, A.R. Walker, P. Williams, E. Rozo, E.S. Rykoff, A. Queiroz, E. Luque, A. Benoit-Lévy, D. Tucker, I. Sevilla, R.A. Gruendl, L.N.d. Costa, A.F. Neto, M.A.G. Maia, T. Abbott, S. Allam, R. Armstrong, A.H. Bauer, G.M. Bernstein, R.A. Bernstein, E. Bertin, D. Brooks, E. Buckley-Geer, D.L. Burke, A.C. Rosell, F.J. Castander, R. Covarrubias, C.B. D’Andrea, D.L. DePoy, S. Desai, H.T. Diehl, T.F. Eifler, J. Estrada, A.E. Evrard, E. Fernandez, D.A. Finley, B. Flaugher, E. Gaztanaga, D. Gerdes, L. Girardi, M. Gladders, D. Gruen, G. Gutierrez, J. Hao, K. Honscheid, B. Jain, D. James, S. Kent, R. Kron, K. Kuehn, N. Kuropatkin, O. Lahav, T.S. Li, H. Lin, M. Makler, M. March, J. Marshall, P. Martini, K.W. Merritt, C. Miller, R. Miquel, J. Mohr, E. Neilsen, R. Nichol, B. Nord, R. Ogando, J. Peoples, D. Petravick, A.A. Plazas, A.K. Romer, A. Roodman, M. Sako, E. Sanchez, V. Scarpine, M. Schubnell, R.C. Smith, M. Soares-Santos, F. Sobreira, E. Suchyta, M.E.C. Swanson, G. Tarle, J. Thaler, D. Thomas, W. Wester, J. Zuntz, Eight new milky way companions discovered in first-year dark energy survey data. Astrophys. J. 807(1), 50 (2015) https://doi.org/10.1088/0004-637X/807/1/50

  5. L.S. Collaboration, C. Virgo, B.P. Abbott, R. Abbott, T.D. Abbott, M.R. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R.X. Adhikari, V.B. Adya, C. Affeldt, M. Agathos, K. Agatsuma, N. Aggarwal, O.D. Aguiar, L. Aiello, A. Ain, P. Ajith, B. Allen, A. Allocca, P.A. Altin, S.B. Anderson, W.G. Anderson, K. Arai, M.A. Arain, M.C. Araya, C.C. Arceneaux, J.S. Areeda, N. Arnaud, K.G. Arun, S. Ascenzi, G. Ashton, M. Ast, S.M. Aston, P. Astone, P. Aufmuth, C. Aulbert, S. Babak, P. Bacon, M.K.M. Bader, P.T. Baker, F. Baldaccini, G. Ballardin, S.W. Ballmer, J.C. Barayoga, S.E. Barclay, B.C. Barish, D. Barker, F. Barone, B. Barr, L. Barsotti, M. Barsuglia, D. Barta, J. Bartlett, M.A. Barton, I. Bartos, R. Bassiri, A. Basti, J.C. Batch, C. Baune, V. Bavigadda, M. Bazzan, B. Behnke, M. Bejger, C. Belczynski, A.S. Bell, C.J. Bell, B.K. Berger, J. Bergman, G. Bergmann, C.P.L. Berry, D. Bersanetti, A. Bertolini, J. Betzwieser, S. Bhagwat, R. Bhandare, I.A. Bilenko, G. Billingsley, J. Birch, R. Birney, O. Birnholtz, S. Biscans, A. Bisht, M. Bitossi, C. Biwer, M.A. Bizouard, J.K. Blackburn, C.D. Blair, D.G. Blair, R.M. Blair, S. Bloemen, O. Bock, T.P. Bodiya, M. Boer, G. Bogaert, C. Bogan, A. Bohe et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116(6), 061102 (2016). https://doi.org/10.1103/PhysRevLett.116.061102

  6. T. Piran, The physics of gamma-ray bursts. Rev. Mod. Phys. 76(4), 1143 (2005)

    Article  ADS  Google Scholar 

  7. A.M. Mandell, K. Haynes, E. Sinukoff, N. Madhusudhan, A. Burrows, D. Deming, Exoplanet transit spectroscopy using wfc3: Wasp-12 b, wasp-17 b, and wasp-19 b. Astrophys. J. 779(2), 128 (2013)

    Article  ADS  Google Scholar 

  8. B.A. Mazin, S.R. Meeker, M.J. Strader, P. Szypryt, D. Marsden, J.C.V. Eyken, G.E. Duggan, A.B. Walter, G. Ulbricht, M. Johnson, Arcons: a 2024 pixel optical through near-IR cryogenic imaging spectrophotometer. Publ. Astron. Soc. Pac. 125(933), 1348–1361 (2013)

    Article  ADS  Google Scholar 

  9. ...S.R. Meeker, B.A. Mazin, A.B. Walter, P. Strader, N. Fruitwala, C. Bockstiegel, P. Szypryt, G. Ulbricht, G. Coiffard, B. Bumble, G. Cancelo, T. Zmuda, K. Treptow, N. Wilcer, G. Collura, R. Dodkins, I. Lipartito, N. Zobrist, M. Bottom, J.C. Shelton, D. Mawet, J.C. Eyken, G. Vasisht, E. Serabyn, Darkness: a microwave kinetic inductance detector integral field spectrograph for high-contrast astronomy. Publ. Astron. Soc. Pac. 130(988), 065001 (2018). https://doi.org/10.1088/1538-3873/aab5e7

    Article  ADS  Google Scholar 

  10. J. Gao, M.R. Vissers, M.O. Sandberg, F.C.S. Silva, S.W. Nam, D.P. Pappas, D.S. Wisbey, E.C. Langman, S.R. Meeker, B.A. Mazin, H.G. Leduc, J. Zmuidzinas, K.D. Irwin, A titanium-nitride near-infrared kinetic inductance photon-counting detector and its anomalous electrodynamics. Appl. Phys. Lett. 101(14), 142602 (2012). https://doi.org/10.1063/1.4756916

    Article  ADS  CAS  Google Scholar 

  11. P. Nicaise, J. Hu, J.-M. Martin, S. Beldi, C. Chaumont, P. Bonifacio, M. Piat, H. Geoffray, F. Boussaha, Investigation of optical coupling in microwave kinetic inductance detectors using superconducting reflective plates. J. Low Temp. Phys. 209(5), 1242–1248 (2022). https://doi.org/10.1007/s10909-022-02789-7

    Article  ADS  CAS  Google Scholar 

  12. F. Boussaha, J. Hu, P. Nicaise, J.-M. Martin, C. Chaumont, P.V. Dung, J. Firminy, F. Reix, P. Bonifacio, M. Piat, H. Geoffray, Photon-counting with single stoichiometric tin layer-based optical mkids. Appl. Phys. Lett. (2023). https://doi.org/10.1063/5.0147584

    Article  Google Scholar 

  13. M.R. Vissers, J. Gao, M. Sandberg, S.M. Duff, D.S. Wisbey, K.D. Irwin, D.P. Pappas, Proximity-coupled TI/TIN multilayers for use in kinetic inductance detectors. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4804286

    Article  Google Scholar 

  14. P. Szypryt, S.R. Meeker, G. Coiffard, N. Fruitwala, B. Bumble, G. Ulbricht, A.B. Walter, M. Daal, C. Bockstiegel, G. Collura, N. Zobrist, I. Lipartito, B.A. Mazin, Large-format platinum silicide microwave kinetic inductance detectors for optical to near-IR astronomy. Opt. Express 25(21), 25894–25909 (2017). https://doi.org/10.1364/OE.25.025894

    Article  ADS  CAS  PubMed  Google Scholar 

  15. N. Zobrist, G. Coiffard, B. Bumble, N. Swimmer, S. Steiger, M. Daal, G. Collura, A.B. Walter, C. Bockstiegel, N. Fruitwala, I. Lipartito, B.A. Mazin, Design and performance of hafnium optical and near-IR kinetic inductance detectors. Appl. Phys. Lett. (2019). https://doi.org/10.1063/1.5127768

    Article  Google Scholar 

  16. N. Zobrist, W.H. Clay, G. Coiffard, M. Daal, N. Swimmer, P. Day, B.A. Mazin, Membraneless phonon trapping and resolution enhancement in optical microwave kinetic inductance detectors. Phys. Rev. Lett. 129(1), 017701 (2022). https://doi.org/10.1103/PhysRevLett.129.017701

    Article  ADS  CAS  PubMed  Google Scholar 

  17. K. Kouwenhoven, D. Fan, E. Biancalani, S.A.H. Rooij, T. Karim, C.S. Smith, V. Murugesan, D.J. Thoen, J.J.A. Baselmans, P.J. Visser, Resolving power of visible-to-near-infrared hybrid \(\beta\text{-}{{\rm Ta}}{{/\rm Nb}}\text{-}{{\rm Ti}}\text{-}{{\rm N}}\) kinetic inductance detectors. Phys. Rev. Appl. 19(3), 034007 (2023). https://doi.org/10.1103/PhysRevApplied.19.034007

    Article  ADS  CAS  Google Scholar 

  18. J.S. Gao, The physis of superconducting microwave resonators. PhD thesis, Caltech (2008)

  19. O. Noroozian, P.K. Day, B.H. Eom, H.G. Leduc, J. Zmuidzinas, Crosstalk reduction for superconducting microwave resonator arrays. IEEE Trans. Microw. Theory Tech. 60(5), 1235–1243 (2012). https://doi.org/10.1109/tmtt.2012.2187538

    Article  ADS  Google Scholar 

  20. O. Noroozian, Superconducting Microwave Resonator Arrays for Submillimeter/Far-Infrared Imaging. PhD thesis, Caltech (2012)

  21. J. Hu, M. Salatino, A. Traini, C. Chaumont, F. Boussaha, C. Goupil, M. Piat, Proximity-coupled Al/Au bilayer kinetic inductance detectors. J. Low Temp. Phys. 199(1), 355–361 (2020). https://doi.org/10.1007/s10909-019-02313-4

    Article  ADS  CAS  Google Scholar 

  22. J. Gao, M. Daal, A. Vayonakis, S. Kumar, J. Zmuidzinas, B. Sadoulet, B.A. Mazin, P.K. Day, H.G. Leduc, Experimental evidence for a surface distribution of two-level systems in superconducting lithographed microwave resonators. Appl. Phys. Lett. 92(15), 152505 (2008). https://doi.org/10.1063/1.2906373

    Article  ADS  CAS  Google Scholar 

  23. J. Hu, F. Boussaha, J.-M. Martin, P. Nicaise, C. Chaumont, S. Beldi, M. Piat, P. Bonifacio, Large inverse transient phase response of titanium-nitride-based microwave kinetic inductance detectors. Appl. Phys. Lett. (2021). https://doi.org/10.1063/5.0074103

    Article  PubMed  PubMed Central  Google Scholar 

  24. W. Guo, X. Liu, Y. Wang, Q. Wei, L.F. Wei, J. Hubmayr, J. Fowler, J. Ullom, L. Vale, M.R. Vissers, J. Gao, Counting near infrared photons with microwave kinetic inductance detectors. Appl. Phys. Lett. 110(21), 212601 (2017). https://doi.org/10.1063/1.4984134

    Article  ADS  CAS  Google Scholar 

  25. M. Martinez, L. Cardani, N. Casali, A. Cruciani, G. Pettinari, M. Vignati, Measurements and simulations of athermal phonon transmission from silicon absorbers to aluminum sensors. Phys. Rev. Appl. (2019). https://doi.org/10.1103/PhysRevApplied.11.064025

    Article  Google Scholar 

  26. J. Zmuidzinas, Superconducting microresonators: physics and applications. Ann. Rev. Condens. Matter Phys. 3(1), 169–214 (2012). https://doi.org/10.1146/annurev-conmatphys-020911-125022

    Article  CAS  Google Scholar 

  27. A. Kardakova, M. Finkel, D. Morozov, V. Kovalyuk, P. An, C. Dunscombe, M. Tarkhov, P. Mauskopf, T.M. Klapwijk, G. Goltsman, The electron–phonon relaxation time in thin superconducting titanium nitride films. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4851235

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the European Research Council (ERC) through Grant 835087 (SPIAKID) and UnivEarhS Labex program.

Author information

Authors and Affiliations

Authors

Contributions

Dr. MRR: Conceptualization methodology, original draft preparation Dr. RNS, Dr. CAD Supervision Dr. MU-S Dr. NKS supervision, Dr. MAM supervision

Corresponding author

Correspondence to Hu Jie.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, H., Paul, N., Faouzi, B. et al. Development of MKIDs in the Optical and Near-Infrared Bands for SPIAKID. J Low Temp Phys 214, 113–124 (2024). https://doi.org/10.1007/s10909-023-03018-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03018-5

Keywords

Navigation