Skip to main content
Log in

Tuning of Critical Temperature and Aging Effect of Ti Films For Superconducting Transition-Edge Sensors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Superconducting transition-edge sensors (TESs) are widely used to detect electromagnetic radiation ranging from millimeter wave to γ-ray photons. The energy resolution of TESs is mainly determined by their critical temperature (TC). We propose to tune the TC of Ti film by baking in air for a period at a moderate temperature and find that TC is inversely proportional to the logarithm of baking time (tbaking) for a given baking temperature (Tbaking), but scales with the square of Tbaking for a given tbaking. Ti film covered by a thin Au protection layer follows the same trend when baked in air. Based on the XPS analysis, we attribute the change in TC of Ti films to the oxidation at the surface and diffusion of oxygen into the films. In addition, the aging effect of Ti films is similar to that of baking in air but with much slower change rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. K. D. Irwin, G. C. Hilton, Transition-edge sensors, in Cryogenic Particle Detection, vol 99, (Springer-Verlag, Berlin German, 2005) https://doi.org/10.1007/10933596-3

  2. C. Portesi, E. Taralli, L. Lolli, M. Rajteri, E. Monticone, IEEE Trans. App. Appl. Supercond. 25(3), 2101004 (2015). https://doi.org/10.1109/TASC.2014.2367455

    Article  Google Scholar 

  3. A.E. Lita, A.J. Miller, S.W. Nam, Opt. Express 16(5), 3032 (2008). https://doi.org/10.1364/OE.16.003032

    Article  ADS  PubMed  Google Scholar 

  4. D. Fukuda et al., Opt. Express 19(2), 870 (2011). https://doi.org/10.1364/OE.19.000870

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Y. Geng et al., J. Low Temp. Phys. 199, 556 (2020). https://doi.org/10.1007/s10909-020-02383-9

    Article  ADS  CAS  Google Scholar 

  6. W. Zhang et al., IEEE Trans. Appl. Supercond. 29(5), 2100505 (2019). https://doi.org/10.1109/TASC.2019.2906276

    Article  Google Scholar 

  7. P.Z. Li et al., J. Low Temp. Phys. 209, 248 (2022). https://doi.org/10.1007/s10909-022-02887-6

    Article  ADS  CAS  Google Scholar 

  8. E. Monticone, M. Castellino, R. Rocci, M. Rajteri, IEEE Trans. Appl. Supercond. 31(5), 2102005 (2021). https://doi.org/10.1109/TASC.2021.3069903

    Article  CAS  Google Scholar 

  9. N.J. van der Heijden, P. Khosropanah, J. van der Kuur, M.L. Ridder, J. Low Temp. Phys. 176, 370 (2014). https://doi.org/10.1007/s10909-014-1158-9

    Article  ADS  CAS  Google Scholar 

  10. B. Siri et al., IEEE Trans. Appl. Supercond. 31(5), 7500304 (2021). https://doi.org/10.1109/TASC.2021.3071997

    Article  CAS  Google Scholar 

  11. W. Zhang et al., IEEE Trans. Appl. Supercond. 31(5), 2101205 (2021). https://doi.org/10.1109/TASC.2021.3065632

    Article  CAS  Google Scholar 

  12. Z. Wang et al., IEEE Trans. Appl. Supercond. 28(4), 2100204 (2018). https://doi.org/10.1109/TASC.2018.2799418

    Article  Google Scholar 

  13. G. Fujii et al., J. Low Temp. Phys. 167, 815 (2012). https://doi.org/10.1007/s10909-012-0527-5

    Article  ADS  CAS  Google Scholar 

  14. E.M. Vavagiakis et al., J. Low Temp. Phys. 199, 408–415 (2020). https://doi.org/10.1007/s10909-019-02281-9

    Article  ADS  CAS  Google Scholar 

  15. A.H.J. van den Berg, W. Lisowski, M. Smithers, J. Anal. Chem. 365, 231–235 (1999). https://doi.org/10.1007/s002160051479

    Article  Google Scholar 

  16. T.L. Barr, S. Seal, J. Vac. Sci. Technol. A 13, 1239–1246 (1995). https://doi.org/10.1116/1.579868

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported partly by NSFC under Grants 12293032, 120101002, 12173097, the National Key R&D Program of China under Grant 2020YFC2201703.

Author information

Authors and Affiliations

Authors

Contributions

W. Zhang wrote the main manuscript text, all authors reviewed the manuscript.

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Wang, Z., Li, P.Z. et al. Tuning of Critical Temperature and Aging Effect of Ti Films For Superconducting Transition-Edge Sensors. J Low Temp Phys 214, 106–112 (2024). https://doi.org/10.1007/s10909-023-03017-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03017-6

Keywords

Navigation