Skip to main content
Log in

Design of Flat All-Dielectric Metasurface Lens for Antenna-Coupled Transition-Edge Sensor Bolometers

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The focal plane of a telescope for cosmic microwave background (CMB) observation typically contains a large-scale array of transition-edge sensor (TES) bolometers. Polarized planar antennas are easy to fabricate and integrate, compared to commonly used horn antennas in receiving modules. In order to enhance the directivity and coupling efficiency, a planar antenna is generally equipped with a hyper-hemispherical silicon lens. However, a Si lens has a large volume, and the fabrication and assembly processes are complex. A flat all-dielectric metasurface lens is proposed to replace Si-lens to converge beam and increase gain of a slot antenna. The all-dielectric structure of silicon holes with sub-wavelength thickness can change the volumetric fill factor to adjust the local effective refractive index, and thus manipulate the shape of wavefront while ensuring high transmission efficiency. The meta-lens was found to exhibit high gain, low cross polarization and good beam symmetry, as verified by simulated electric field amplitude distribution and far-field patterns at 225 GHz using CST microwave studio suite. The detector array and the meta-lens array can both be fabricated using standard planar photolithography technology, and the combination has the potential to achieve larger scale arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. W. Hu, S. Dodelson, Annual Rev. Astron. Astrophys. 40, 171–216 (2002)

    Article  ADS  Google Scholar 

  2. D.N. Spergel, R. Bean, O. Doré et al., Astrophys. J. 170(2), 377–408 (2007)

    Article  Google Scholar 

  3. M. Niemack, P. Ade, J. Aguirre et al., Proc. SPIE 7741, 77411S (2010). https://doi.org/10.1117/12.857464

    Article  Google Scholar 

  4. P.A.R. Ade, R.W. Aikin, M. Amiri et al., Astrophys. J. 792, 62 (2014). https://doi.org/10.1088/0004-637X/812/2/176

    Article  ADS  CAS  Google Scholar 

  5. Z. Staniszewski, R.W. Aikin, M. Amiri et al., J. Low Temp. Phys. 167, 827–833 (2012). https://doi.org/10.1007/s10909-012-0510-1

    Article  ADS  CAS  Google Scholar 

  6. G. D’Alessandro, E.S. Battistelli, P. de Bernardis, M. De Petris, M.M. Gamboa Lerena, L. Grandsire, J.C. Hamilton, S. Marnieros, S. Masi, A. Mennella, L. Mousset, J. Low Temp. Phys. 209(5–6), 839–48 (2022). https://doi.org/10.1007/s10909-022-02775-z

    Article  ADS  CAS  Google Scholar 

  7. E. Healy, D. Dutcher, Z. Atkins et al., J. Low Temp. Phys. 209, 815–823 (2022). https://doi.org/10.1007/s10909-022-02788-8

    Article  ADS  CAS  Google Scholar 

  8. A. Suzuki, P.A.R. Ade, Y. Akiba et al., J. Low Temp. Phys. 193, 1048–1056 (2018). https://doi.org/10.1007/s10909-018-1947-7

    Article  ADS  CAS  Google Scholar 

  9. A.J. Anderson, P.A.R. Ade, Z. Ahmed, J. Low Temp. Phys. 199, 320–329 (2020). https://doi.org/10.1007/s10909-019-02259-7

    Article  ADS  CAS  Google Scholar 

  10. A.D. Olver, Electron. Commun. Eng. J. 4, 4–10 (1992)

    Article  Google Scholar 

  11. D.F. Filipovic, S.S. Gearhart, G.M. Rebeiz, I.E.E.E.T. Microw, Theory 41(10), 1738–1749 (1993). https://doi.org/10.1109/22.247919

    Article  Google Scholar 

  12. J. Hu, Z. Lou, S.C. Shi, Proc. SPIE 8562, 85620Z (2012). https://doi.org/10.1117/12.999606

    Article  ADS  Google Scholar 

  13. Y.H. He, Z.Q. Wen, L. Chen, Y.Y. Li, Y.Z. Ning, G. Chen, I.E.E.E. Photon, Technol. Lett. 26(18), 1801–1804 (2014). https://doi.org/10.1109/LPT.2014.2333525

    Article  Google Scholar 

  14. F. Aieta, P. Genevet, N. Yu, M.A. Kats, Z. Gaburro, F. Capasso, Nano Lett. 12(3), 1702–1706 (2012). https://doi.org/10.1021/nl300204s

    Article  ADS  CAS  PubMed  Google Scholar 

  15. C. Pfeiffer, A. Grbic, Phys. Rev. Appl. 2(4), 044011 (2014). https://doi.org/10.1103/PhysRevApplied.2.044011

    Article  ADS  CAS  Google Scholar 

  16. V. Raulot, B. Serio, P. Gérard, P. Twardowski, P. Meyrueis, Proc. SPIE Proc. SPIE 7716, 77162J (2010). https://doi.org/10.1117/12.854908

    Article  ADS  CAS  Google Scholar 

  17. W. Freese, T. Kämpfe, W. Rockstroh, E.B. Kley, A. Tünnermann, Opt. Express 19(9), 8684–8692 (2011). https://doi.org/10.1364/OE.19.008684

    Article  ADS  CAS  PubMed  Google Scholar 

  18. M. Ishii, K. Iwami, N. Umeda, Opt. Express 24(8), 7966–7976 (2016). https://doi.org/10.1364/OE.24.007966

    Article  ADS  CAS  PubMed  Google Scholar 

  19. L. Zhang, S.T. Mei, K. Huang, C.W. Qiu, Adv. Opt. Mater. 4(6), 818–833 (2016). https://doi.org/10.1002/adom.201500690

    Article  CAS  Google Scholar 

  20. E. Arbabi, A. Arbabi, S.M. Kamali, Y. Horie, A. Faraon, Opt. Express 24(16), 18468–18477 (2016). https://doi.org/10.1038/srep32803

    Article  ADS  CAS  PubMed  Google Scholar 

  21. M. Khorasaninejad, A.Y. Zhu, C. Roques-Carmes, W.T. Chen, J. Oh, I. Mishra, R.C. Devlin, F. Capasso, Nano Lett. 16(11), 7229–7234 (2016). https://doi.org/10.1021/acs.nanolett.6b03626

    Article  ADS  CAS  PubMed  Google Scholar 

  22. G. Chattopadhyay, J. Zmuidzinas, I.E.E.E.T. Antenn, Propag. 46(5), 736–737 (1998). https://doi.org/10.1109/8.668920

    Article  Google Scholar 

  23. M. Naruse, T. Nitta, K. Karatsu et al., J. Infrared Milli. Terahz. Waves 37, 128–136 (2016). https://doi.org/10.1007/s10762-015-0216-y

    Article  CAS  Google Scholar 

  24. A. Goldin, J. Bock, C. Hunt, A.E. Lange, H. LeDuc, A. Vayonakis, J. Zmuidzinas, Low Temp. Detectors 605, 251–254 (2002). https://doi.org/10.1063/1.1457640

    Article  ADS  Google Scholar 

  25. S.M. Duff, J. Austermann, J.A. Beall et al., J. Low Temp. Phys. 184, 634–641 (2016). https://doi.org/10.1007/s10909-016-1576-y

    Article  ADS  CAS  Google Scholar 

  26. R. Knochel, B. Mayer, IEEE Int. Digest Microwave Sympos. 1, 471–474 (1990). https://doi.org/10.1109/MWSYM.1990.99621

    Article  Google Scholar 

  27. Q. Yu, Y. Zhang, C. Zhao et al., Chin. Phys. B 30, 077402 (2021). https://doi.org/10.1088/1674-1056/abe0c6

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the helpful discussions with Zhengwei Li and Shibo Shu. This work was supported by the National Key Research and Development Program of China (2022YFC2205101).

Author information

Authors and Affiliations

Authors

Contributions

Qing Yu and Kaiyong He wrote the main manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., He, K., Wu, X. et al. Design of Flat All-Dielectric Metasurface Lens for Antenna-Coupled Transition-Edge Sensor Bolometers. J Low Temp Phys 214, 92–99 (2024). https://doi.org/10.1007/s10909-023-03014-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03014-9

Keywords

Navigation