Skip to main content
Log in

Quantum Anisotropic Antiferromagnetic Heisenberg Model for Description of Magnetic Properties at Low Temperatures from KTb(WO4)2

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Low-dimensional magnetic materials have attracted the attention of several researchers in recent decades, mainly because of the exotic magnetic properties and superconductivity of some of these materials. One of these materials is KTb(WO\(_4\))\(_2\), generally considered a prototype of the 2D Ising model. However, KTb(WO\(_4\))\(_2\) has some peculiarities in its magnetization behaviour under a magnetic field low-temperature regime. This peculiarity especially concerns the nonlinear dependence of magnetization to an applied magnetic field which is a behaviour that cannot be described using a pure two-dimensional Ising model. KTb(WO\(_4\))\(_2\) undergoes a metamagnetic phase transition at low temperatures, and we believe that such behaviour may be related to quantum effects and high magnetic anisotropy. Therefore, KTb(WO\(_4\))\(_2\) cannot be a perfect prototype for the 2D Ising model. In this work, we present a proposal to use the anisotropic quantum Heisenberg model to describe the magnetic properties of the KTb(WO\(_4\))\(_2\) quasi-doublet. Our main objective is to describe nonlinear magnetic properties at the low-temperature regime (T < 0.5 K). To achieve our objective, we simulate the magnetic properties of the material considering the anisotropy parameter \(\Delta\) values via quantum Monte Carlo (QMC) and compare the results to published experimental data. For comparison, we plot diagrams of magnetization versus field and susceptibility as a T function of temperature. Our results show close agreement with the experimental data, especially at low temperatures and for intermediate values of the magnetic anisotropy parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.A. Klimin, A.V. Peschanskii, Low Temp. Phys. 47, 973 (2021)

    Article  ADS  Google Scholar 

  2. S.A. Klimin, A.V. Peschanskii, Fiz. Nizk. Temp. 47, 1061–1071 (2021)

    Google Scholar 

  3. A.A. Zvyagin, K. Kutko, D. Kamenskyi, A.V. Peschanskii, S. Poperezhai, N.M. Nesterenko, Phys. Rev. B 98, 064406 (2018)

    Article  ADS  Google Scholar 

  4. I.P. Muthuselvam, R. Sankar, V.N. Singh, G.N. Rao, W.-L. Lee, G.-Y. Guo, F.-C. Chou, Inorg. Chem. 54, 4303–4309 (2015)

    Article  Google Scholar 

  5. M.T. Borowiec et al., Phys. B 405, 4886–4891 (2010)

    Article  ADS  Google Scholar 

  6. M.T. Borowiec et al., Fizika Nizkikh Temperature 37(8), 854–859 (2011)

    Google Scholar 

  7. M.T. Borowiec et al., J. Phys.: Condens. Matter 19056206, 16pp (2007)

    Google Scholar 

  8. A.A. Loginov et al., Low Temp. Phys. 32, 1 (2006)

    Article  Google Scholar 

  9. A. Cuccoli et al., The two-dimensional quantum Heisenberg antiferromagnet with Ising-like anisotropy. Braz. J. Phys. 30, 697–700 (2000)

    Article  ADS  Google Scholar 

  10. K.G. Dergachev, M.I. Kobets, A.A. Loginov, E.N. Khatsko, Low Temp. Phys. 31, 862 (2005)

    Article  ADS  Google Scholar 

  11. V. Jambunathan, X. Mateos, M.C. Pujol, J.J. Carvajal, F. Díaz, M. Aguiló, U. Griebner, V. Petrov, Opt. Express 19, 25279–25289 (2011)

    Article  ADS  Google Scholar 

  12. M. Galceran, M.C. Pujol, M. Aguilo, F. Diaz, J. Sol–Gel Sci. Technol. 42, 79–88 (2007)

    Article  Google Scholar 

  13. A.D. Prokhorov, M.T. Borowiec, M.C. Pujol, I.M. Krygin, A.A. Prokhorov, V.P. Dyakonov, P. Aleshkevych, T. Zayarnyuk, H. Szymczak, Eur. Phys. J. B 55, 389–395 (2007)

    Article  ADS  Google Scholar 

  14. M.T. Borowiec, T. Zayarnyuk, M.C. Pujolb, M. Aguilo, F. Diaz, E.E. Zubo, A.D. Prokhorov, M. Berkowski, W. Domuchowsk, Physica B 405, 4886–4891 (2010)

    Article  ADS  Google Scholar 

  15. F. Xiao, F.M. Woodward, C.P. Landee, M.M. Turnbull, C. Mielke, N. Harrison, T. Lancaster, S.J. Blundell, P.J. Baker, P. Babkevich, F.L. Pratt, Phys. Rev. B 79, 134412 (2009)

    Article  ADS  Google Scholar 

  16. A.F. Albuquerque et al., J. Magn. Magn. Mater. 310, 1187–1193 (2007)

    Article  ADS  Google Scholar 

  17. B. Baue et al., J. Statist. Mech. Theory Exp. 10, P05001 (2011)

    Google Scholar 

  18. E. Khatsko, A. Loginov, A. Cherny, A. Rykova, Physica B: Condensed Matter 378, 1126–1127 (2006)

    Article  ADS  Google Scholar 

  19. E. Khatsko, C. Paulsen, A. Rykova, Low Temp. Phys. 37, 1048 (2011)

    Article  ADS  Google Scholar 

  20. S.S. Aplesnin, Phys. Stat. Sol. (B) 207, 491 (1998)

    Article  ADS  Google Scholar 

  21. C.-H. Chern, M. Tsukamoto, Phys. Rev. B 77, 172404 (2008)

    Article  ADS  Google Scholar 

  22. Makoto ISODA, Hiroki, Toru, J. Phys. Soci. Jpn. 80, 084704 (2011)

Download references

Acknowledgements

We would like to thank the anonymous referees for their helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Freitas, A.S., Silva, C.A. & Silva, L.S. Quantum Anisotropic Antiferromagnetic Heisenberg Model for Description of Magnetic Properties at Low Temperatures from KTb(WO4)2. J Low Temp Phys 214, 32–39 (2024). https://doi.org/10.1007/s10909-023-03012-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03012-x

Keywords

Navigation