Skip to main content
Log in

Thermoelectric Single-Photon Detection Through Superconducting Tunnel Junctions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Bipolar thermoelectricity in tunnel junctions between superconductors of different energy gap has been recently predicted and experimentally demonstrated. This effect showed thermovoltages up to \(\pm 150\;\mu\)V at milliKelvin temperatures. Thus, superconducting tunnel junctions can be exploited to realize a passive single-photon thermoelectric detector \(\mathrm{{TED}}\) operating in the broadband range 15 GHz - 50 PHz. In particular, this detector is expected to show a signal-to-noise ratio of about 15 down to \(\nu =50\) GHz and an operating window of more than 4 decades. Therefore, the \(\mathrm{{TED}}\) might find applications in quantum computing, telecommunications, optoelectronics, spectroscopy and astro-particle physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.D. Semenov, G.N. Gol’tsman, R. Sobolewski, Hot-electron effect in superconductors and its applications for radiation sensors. Supercond. Sci. Technol. 15, 1 (2002)

    Article  ADS  Google Scholar 

  2. T.T. Heikkilä, R. Ojajärvi, I.J. Maasilta, E. Strambini, F. Giazotto, F.S. Bergeret, Thermoelectric radiation detector based on superconductor-ferromagnet systems. Phys. Rev. Appl. 10, 034053 (2018)

    Article  ADS  Google Scholar 

  3. A. Ozaeta, P. Virtanen, F.S. Bergeret, T.T. Heikkilä, Predicted very large thermoelectric effect in ferromagnet-superconductor junctions in the presence of a spin-splitting magnetic field. Phys. Rev. Lett. 112, 057001 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. R.C. Dynes, J.P. Garno, G.B. Hertel, T.P. Orlando, Tunneling study of superconductivity near the metal-insulator transition. Phys. Rev. Lett. 53, 2437 (1984)

    Article  ADS  CAS  Google Scholar 

  5. A.G. Aronov, B.Z. Spivak, Photoeffect in a josephson junction. JETP Lett. 22, 101 (1975)

    ADS  Google Scholar 

  6. M.E. Gershenzon, M.I. Falei, Absolute negative resistance of a tunnel contact between superconductors with a nonequilibrium quasiparticle distribution function. JETP Lett. 44, 682 (1986)

    ADS  Google Scholar 

  7. G. Marchegiani, A. Braggio, F. Giazotto, Nonlinear thermoelectricity with electron-hole symmetric systems. Phys. Rev. Lett. 124, 106801 (2020)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. G. Marchegiani, A. Braggio, F. Giazotto, Superconducting nonlinear thermoelectric heat engine. Phys. Rev. B 101, 214509 (2020)

    Article  ADS  CAS  Google Scholar 

  9. A. Kemppinen, A.J. Manninen, M. Möttönen, J.J. Vartiainen, J.T. Peltonen, J.P. Pekola, Suppression of the critical current of a balanced superconducting quantum interference device. Appl. Phys. Lett. 92, 052110 (2008)

    Article  ADS  Google Scholar 

  10. A. Fornieri, C. Blanc, R. Bosisio, S. D’Ambrosio, F. Giazotto, Nanoscale phase engineering of thermal transport with a Josephson heat modulator. Nat. Nanotechnol. 11, 258 (2016)

    Article  ADS  CAS  PubMed  Google Scholar 

  11. G. Marchegiani, A. Braggio, F. Giazotto, Phase-tunable thermoelectricity in a Josephson junction. Phys. Rev. Res. 2, 043091 (2020)

    Article  CAS  Google Scholar 

  12. G. Germanese, F. Paolucci, G. Marchegiani, A. Braggio, F. Giazotto, Bipolar thermoelectric Josephson engine. Nat. Nanotechnol. 17, 1084 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. G. Germanese, F. Paolucci, G. Marchegiani, A. Braggio, F. Giazotto, Phase-control of bipolar thermoelectricity in Josephson tunnel junctions. Phys. Rev. Appl. 19, 014074 (2023)

    Article  ADS  CAS  Google Scholar 

  14. F. Paolucci, G. Germanese, A. Braggio, F. Giazotto, A highly sensitive broadband superconducting thermoelectric single-photon detector. Appl. Phys. Lett. 122, 173503 (2023)

    Article  ADS  CAS  Google Scholar 

  15. S.H. Moseley, J.C. Mather, D. McCammon, Thermal detectors as x-ray spectrometers. J. Appl. Phys. 56, 1257 (1984)

    Article  ADS  CAS  Google Scholar 

  16. H. Rabani, F. Taddei, O. Bourgeois, R. Fazio, F. Giazotto, Phase-dependent electronic specific heat of mesoscopic Josephson junction. Phys. Rev. B 78, 012503 (2008)

    Article  ADS  Google Scholar 

  17. H. Ezawa, H. Matsuo, M. Ukibe, G. Fujii, S. Shiki, Studies on terahertz photon counting detectors with low-leakage sis junctions. J. Low Temp. Phys. 194, 426–432 (2019)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The research leading to these results received partial funding from the EU’s Horizon 2020 research and innovation program under Grant Agreement No. 800923 (SUPERTED), No. 964398 (SUPERGATE) and No. 101057977 (SPECTRUM). F. P. acknowledges PRIN2022 PNRR MUR project EQUATE (Grant No. 2022Z7RHRS) for partial financial support. A.B. acknowledges PRIN2022 PNRR MUR project NEThEQS (Grant No. 2022B9P8LN) and the Royal Society through the International Exchanges Scheme between the UK and Italy (Grants No. IEC R2 192166.) for partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Paolucci.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolucci, F., Germanese, G., Braggio, A. et al. Thermoelectric Single-Photon Detection Through Superconducting Tunnel Junctions. J Low Temp Phys 214, 86–91 (2024). https://doi.org/10.1007/s10909-023-03011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03011-y

Keywords

Navigation