Skip to main content
Log in

Influence of Temperature and Spin–Orbit Interaction on the Effective Mass of Polaron in an Anisotropic Quantum Dot

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Using the linear combination operator method and variational technique improved by Tokuda, we obtain the expression of the effective mass of a strong coupled polaron in an anisotropic quantum dot. Due to the spin–orbit interaction, the effective mass of the polaron splits into two branches. The dependence of effective mass on temperature, electron–phonon coupling strength, transverse and longitudinal confinement lengths, and velocity is discussed by numerical calculation. The theoretical results indicate that the effective mass of the polaron is an increasing function of temperature and electron–phonon coupling strength, but a decreasing function of transverse confinement length, longitudinal confinement length, and velocity. The absolute value of spin splitting effective mass increases with the increase of temperature and spin–orbit coupling parameter, but decreases with the increase of transverse confinement length, longitudinal confinement length, and velocity. Due to the heavy hole characteristic, the spin splitting effective mass is negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.I. Rashba, A.I.L. Efros, Phys. Rev. Lett. 91, 126405 (2003)

    Article  ADS  Google Scholar 

  2. S.A. Wolf, D.D. Awschalom, R.A. Buhrman et al., Science 294, 1488 (2001)

    Article  ADS  Google Scholar 

  3. S.-P. Shan, S.-H. Chen, J. Low Temp. Phys. 197, 379 (2019)

    Article  ADS  Google Scholar 

  4. J. Liu, J.-L. Xiao, S.-F. Huo, Z.-Y. Chen, Commun. Theor. Phys.. Theor. Phys. 48, 930 (2007)

    Article  ADS  Google Scholar 

  5. S.-P. Shan, Y.-L. Li, J. Low Temp. Phys. 177, 315 (2014)

    Article  ADS  Google Scholar 

  6. L. Hong, J. Ge, S. Shuang, D.-K. Liu, Acta. Phys. Sin. 71, 016301 (2022)

    Article  Google Scholar 

  7. W. Xuan, N. Yang, J. Luo, R. Wang et al., Appl. Phys. A 129, 588 (2023)

    Article  ADS  Google Scholar 

  8. S.-P. Shan, S.-H. Chen, Pramana-J. Phys. 94, 15 (2020)

    Article  ADS  Google Scholar 

  9. A.M. Babayev, Ş Çakmaktepe, D.T. Altug, J. Opto. Biom. Mate. 1, 37 (2009)

    Google Scholar 

  10. E. Lipparini, M. Barranco, F. Malet, M. Pi, Phys. Rev. B 74, 115303 (2006)

    Article  ADS  Google Scholar 

  11. Z.-J. Qiu, Y.-S. Gui, X.-Z. Shu, N. Dai et al., Acta. Phys. Sin. 53, 1186 (2004)

    Article  Google Scholar 

  12. S.-P. Shan, S.-H. Chen, J.-L. Xiao, J. Low Temp. Phys. 175, 523 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Shu-Ping Shan, Wei-Dong Zou, Ren-Zhong Zhuang, and Hui-Ye Qiu wrote the main manuscript text and Rong-Xin Chen prepared figures 1-8. All authors reviewed the manuscript.

Corresponding author

Correspondence to Shu-Ping Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shan, SP., Zou, WD., Zhuang, RZ. et al. Influence of Temperature and Spin–Orbit Interaction on the Effective Mass of Polaron in an Anisotropic Quantum Dot. J Low Temp Phys 214, 21–31 (2024). https://doi.org/10.1007/s10909-023-03010-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03010-z

Keywords

Navigation