Skip to main content
Log in

Thermodynamic Properties of a One-dimensional, Harmonically Trapped Bosonic (87Rb) Gas Mixture Using the Static Fluctuation Approximation

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, the static fluctuation approximation (SFA) is used to investigate the thermodynamic properties of a one-dimensional, harmonically trapped 87Rb–87Rb gas mixture in two different hyperfine states. The interatomic interaction is a repulsive contact potential with appropriate parameters. The closed set of coupled equations, which is a characteristic feature of SFA, is solved numerically by the Gaussian-quadrature method, using an iterative procedure. The following thermodynamic properties of the system are calculated: the chemical potential, condensate fraction, and specific heat capacity. The effects of the temperature and interaction strength [through the transverse frequency \({\omega }_{per }]\) on these properties are explored, so are the effects of the number of particles in the system N, trapping (longitudinal) frequency \(\omega\), and ratio of the numbers of atoms in the two hyperfine states. We have found that N, \(\omega\), and \({\omega }_{\mathrm{per}}\) affect tangibly these thermodynamic quantities at ‘low’ temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All our data are listed in this paper. No other data remain.

References

  1. M. Ota, S. Giorgini, S. Stringari, Phys. Rev. Lett. 123, 075301 (2019)

    Article  ADS  Google Scholar 

  2. R. Roy, A. Green, R. Bowler, S. Gupta, Phys. Rev. Lett. 118, 055301 (2017)

    Article  ADS  Google Scholar 

  3. X.-W. Guan, M.T. Batchelor, M. Takahashi, Phys. Rev. A 76, 043617 (2007)

    Article  ADS  Google Scholar 

  4. F. Isaule, I. Morera, Condens. Matter 7, 9 (2022)

    Article  Google Scholar 

  5. N.B. Jorgensen, L. Wacker, K.T. Skalmstang, M.M. Parish, J. Levinsen, Phys. Rev. Lett. 117, 055302 (2016)

    Article  ADS  Google Scholar 

  6. T.A. Schulze, T. Hartmann, K.K. Voges, M.W. Gempel, E. Tiemann, A. Zenesini, S. Ospelkaus, Phys. Rev. A 97, 023623 (2018)

    Article  ADS  Google Scholar 

  7. P. Maddaloni, M. Modugno, C. Fort, F. Minardi, M. Inguscio, Phys. Rev. Lett. 85, 2413 (2000)

    Article  ADS  Google Scholar 

  8. L. Lavoine, A. Hammond, A. Recati, D.S. Petrov, T. Bourdel, Phys. Rev. Lett. 127, 203402 (2021)

    Article  ADS  Google Scholar 

  9. P. Naidon, D.S. Petrov, Phys. Rev. Lett. 126, 115301 (2021)

    Article  ADS  Google Scholar 

  10. S.B. Papp, J.M. Pino, C.E. Wieman, Phys. Rev. Lett. 101, 040402 (2008)

    Article  ADS  Google Scholar 

  11. A. Burchianti, C. D’Errico, S. Rosi, A. Simoni, M. Modugno, C. Fort, F. Minardi, Phys. Rev. A 98, 063616 (2018)

    Article  ADS  Google Scholar 

  12. D.S. Petrov, G.E. Astrakharchik, Phys. Rev. Lett. 117, 100401 (2016)

    Article  ADS  Google Scholar 

  13. V. Cikojević, L. Vranješ Markić, G.E. Astrakharchik, J. Boronat, Phys. Rev. A 99, 023618 (2019)

    Article  ADS  Google Scholar 

  14. A. Debnath, A. Khan, S. Basu, Phys. Lett. A 439, 128137 (2022)

    Article  Google Scholar 

  15. L. Parisi, S. Giorgini, Phys. Rev. A 102, 023318 (2020)

    Article  ADS  Google Scholar 

  16. S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, T. Hirano, Phys. Rev. A 82, 033609 (2010)

    Article  ADS  Google Scholar 

  17. E.M. Gutierrez, G.A. Oliveira, K.M. Farias, V.S. Bagnato, P. Castilho, Phys. Rev. A 99, 023618 (2021)

    Google Scholar 

  18. G. Rosi, G.E. Astrakharchik, P. Massignan, Phys. Rev. A 103, 043316 (2021)

    Article  ADS  Google Scholar 

  19. A. Bhowmik, P.K. Mondal, S. Majumder, B. Deb, J. Phys. B. 51, 135003 (2018)

    Article  ADS  Google Scholar 

  20. G. Rosi, P. Massignan, M. Lewenstein, G.E. Astrakharchik, Phys. Rev. Res. 1, 033083 (2019)

    Article  Google Scholar 

  21. A. Lode, F.S. Diorico, R. Wu, P. Molignini, L. Papariello, R. Lin, C. Lévêque, L. Exl, M. Tsatsos, R. Chitra, N.J. Mauser, New J. Phys. 20, 055006 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. O.I. Patu, A. Klumper, Phys. Rev. A 92, 043631 (2015)

    Article  ADS  Google Scholar 

  23. A. Burchianti, Ch. D’Errico, M. Prevedelli, L. Salasnich, F. Ancilotto, M. Modugno, F. Minardi, Ch. Fort, Condens. Matter 5, 21 (2020)

    Article  Google Scholar 

  24. D.M. Harber, H.J. Lewandowski, J.M. McGuirk, E.A. Cornell, Phys. Rev. A 66, 053616 (2002)

    Article  ADS  Google Scholar 

  25. M. Egorov, B. Opanchuk, P. Drummond, B.V. Hall, P. Hannaford, A.I. Sidorov, Phys. Rev. A 87, 053614 (2013)

    Article  ADS  Google Scholar 

  26. M.K. Al-Sugheir, H.B. Ghassib, R.R. Nigmatullin, Int. J. Theor. Phys. 40, 1033 (2001)

    Article  Google Scholar 

  27. M.K. Al-Sugheir, Int. J. Theor. Phys. 43, 1527–1539 (2004)

    Article  Google Scholar 

  28. M.K. Al-Sugheir, H.B. Ghassib, M. Awawdeh, Phys. Rev. A 84, 013617 (2011)

    Article  ADS  Google Scholar 

  29. N.M. Ghulam, M.K. Al-Sugheir, H.B. Ghassib, Int. J. Theor. Phys. 47, 2326–2338 (2008)

    Article  Google Scholar 

  30. H.A. Al-Khzon, M.K. Al-Sugheir, H.B. Ghassib, Can. J. Phys. 94(1), 47 (2016)

    Article  ADS  Google Scholar 

  31. H.A. Al-Khzon, M.K. Al-Sugheir, Physica B Condens. Matter 571, 18 (2019)

    Article  ADS  Google Scholar 

  32. H.A. Al-Khzon, M.K. Al-Sugheir, Eur. Phys. J. B. 94, 191 (2021)

    Article  ADS  Google Scholar 

  33. E. Merzbacher, Quantum mechanics, 3rd edn. (Wiley, New York, 1998)

    Google Scholar 

  34. L. Wen, W.M. Liu, J.M. Yongyong Cai, JHu. Zhang, Phys. Rev. A 85, 043602 (2012)

    Article  ADS  Google Scholar 

  35. T. Betz, S. Manz, R. Bucker, T. Berrada, Ch. Koller, G. Kazakov, I.E. Mazets, H.-P. Stimming, A. Perrin, T. Schumm, J. Schmiedmayer. Phys. Rev. Lett. 106, 020`407 (2011)

    Article  Google Scholar 

  36. G. Rosi, G.E. Astrakharchik, S. Stringari, Phys. Rev. A 96, 013613 (2017)

    Article  ADS  Google Scholar 

  37. R. Magnificus, Bose-Einstein condensation in low-dimensional trapped gases, PhD Thesis, University of Amsterdam (2003)

  38. W. Ketterle, N.J. van Druten, Phys. Rev. A 54, 1 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors collaborated very closely together at every stage of the work.

Corresponding author

Correspondence to Mohamed K. Al-Sugheir.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khzon, H., Al-Sugheir, M.K., Joudeh, B. et al. Thermodynamic Properties of a One-dimensional, Harmonically Trapped Bosonic (87Rb) Gas Mixture Using the Static Fluctuation Approximation. J Low Temp Phys 214, 1–20 (2024). https://doi.org/10.1007/s10909-023-03007-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-03007-8

Keywords

Navigation