Skip to main content
Log in

The Heat Capacity of \(^3\)He-B in Silica Aerogel

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The thermodynamic potential for superfluid \(^3\)He-B embedded in a homogeneously distributed random potential is calculated from a quasiclassical reduction of the Luttinger–Ward functional to leading order in \({\mathbf s} =k_{\text {B}}T_c/E_f\). The resulting functional provides an extension of the Ginzburg–Landau free energy functional to all temperatures \(0<T\le T_c\). Theoretical predictions based on this functional for the heat capacity of superfluid \(^3\)He-B embedded in homogeneous, isotropic silica aerogel are in good agreement with experimental reports for superfluid \(^3\)He-B infused into 98.2% porous silica aerogel over the pressure range \(p=11-29\,\text{ bar }\). The analysis supports a conclusion that superfluid \(^3\)He-B infused into high-porosity silica aerogels is a gapless superfluid at all pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Rainer, J.W. Serene, Phys. Rev. B 13, 4745 (1976). https://doi.org/10.1103/PhysRevA.10.2386

    Article  ADS  Google Scholar 

  2. W.P. Halperin, C.N. Archie, F.B. Rasmussen, T.A. Alvesalo, R.C. Richardson, Phys. Rev. B 13, 2124 (1976). https://doi.org/10.1103/PhysRevB.13.2124

    Article  ADS  Google Scholar 

  3. E.V. Thuneberg, S.K. Yip, M. Fogelström, J.A. Sauls, Phys. Rev. Lett. 80, 2861 (1998). https://doi.org/10.1103/PhysRevLett.80.2861

    Article  ADS  Google Scholar 

  4. A. Vorontsov, J.A. Sauls, Phys. Rev. B 68, 064508 (2003). https://doi.org/10.1103/PhysRevB.68.064508

    Article  ADS  Google Scholar 

  5. R. Balian, N.R. Werthamer, Phys. Rev. 131, 1553 (1963). https://doi.org/10.1103/PhysRev.131.1553

    Article  ADS  Google Scholar 

  6. D. Vollhardt, P. Wölfle, The Superfluid Phases of 3He (Taylor Francis, New York, 1990)

    MATH  Google Scholar 

  7. Y. Tsutsumi, T. Mizushima, M. Ichioka, K. Machida, J. Phys. Soc. Jpn. 79(11), 113601 (2010). https://doi.org/10.1143/JPSJ.79.113601

    Article  ADS  Google Scholar 

  8. H. Choi, J.P. Davis, J. Pollanen, W.P. Halperin, Phys. Rev. Lett. 96(12), 125301 (2006). https://doi.org/10.1103/PhysRevLett.96.125301

    Article  ADS  Google Scholar 

  9. Y.M. Bunkov, J. Low Temp. Phys. 174, 1 (2013). https://doi.org/10.1007/s10909-013-0933-3

    Article  Google Scholar 

  10. P. Sharma, J.A. Sauls, J. Low Temp. Phys. 125, 115 (2001). https://doi.org/10.1023/A:1012913717533

    Article  ADS  Google Scholar 

  11. H. Choi, K. Yawata, T. Haard, J. Davis, G. Gervais, N. Mulders, P. Sharma, J. Sauls, W. Halperin, Phys. Rev. Lett. 93(14), 145301 (2004). https://doi.org/10.1103/PhysRevLett.93.145301

    Article  ADS  Google Scholar 

  12. D. Sprague, T. Haard, J. Kycia, M. Rand, Y. Lee, P. Hamot, W. Halperin, Phys. Rev. Lett. 77, 4568 (1996)

    Article  ADS  Google Scholar 

  13. B.I. Barker, Y. Lee, L. Polukhina, D.D. Osheroff, L.W. Hrubesh, J.F. Poco, Phys. Rev. Lett. 85, 2148 (2000)

    Article  ADS  Google Scholar 

  14. J.A. Sauls, Y.M. Bunkov, E. Collin, H. Godfrin, P. Sharma, Phys. Rev. B 72(2), 024507 (2005). https://doi.org/10.1103/PhysRevB.72.024507

    Article  ADS  Google Scholar 

  15. S. Ali, L. Zhang, J.A. Sauls, J. Low Temp. Phys. 162(3–4), 233 (2011). https://doi.org/10.1007/s10909-010-0310-4

    Article  ADS  Google Scholar 

  16. J.W. Serene, D. Rainer, Phys. Rep. 101, 221 (1983). https://doi.org/10.1016/0370-1573(83)90051-0

    Article  ADS  Google Scholar 

  17. W.P. Halperin, J.A. Sauls, arXiv cond-mat.supr-con, 0408593 (2004). http://arxiv.org/abs/cond-mat/0408593v1. 10 pages with 12 figures

  18. K. Matsumoto, J.V. Porto, L. Pollack, E.N. Smith, T.L. Ho, J.M. Parpia, Phys. Rev. Lett. 79, 253 (1997). https://doi.org/10.1103/PhysRevLett.79.253

    Article  ADS  Google Scholar 

  19. J.A. Sauls, P. Sharma, Phys. Rev. B 68, 224502 (2003). https://doi.org/10.1103/PhysRevB.68.224502

    Article  ADS  Google Scholar 

  20. W.P. Halperin, E. Varoquaux, Order Parameter Collective Modes in Superfluid 3He (Elsevier Science Publishers, Amsterdam, 1990), p.353

    Google Scholar 

Download references

Acknowledgements

This research was supported by National Science Foundation Grant DMR-1508730. I thank Bill Halperin and Hyoungsoon Choi for discussions on their experiments and for providing me with their published heat capacity data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Sauls.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauls, J.A. The Heat Capacity of \(^3\)He-B in Silica Aerogel. J Low Temp Phys 213, 42–50 (2023). https://doi.org/10.1007/s10909-023-02996-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02996-w

Keywords

Navigation