Skip to main content
Log in

Kelvin Waves, Mutual Friction, and Fluctuations in the Gross–Pitaevskii Model

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, we first briefly review some of the mutual friction effects on vortex lines and rings that were obtained in the context of the truncated Gross–Pitaevskii equation in references Krstulovic and Brachet (Phys Rev E 83(6):066311, 2011; Phys Rev B 83:132506, 2011), with particular attention to the anomalous slowdown of rings produced by thermally excited Kelvin waves. We then study the effect of mutual friction on the relaxation and fluctuations of Kelvin waves on straight vortex lines by comparing the results of full 3D direct simulations of the truncated Gross–Pitaevskii equation with a simple stochastic Local-Induction-Approximation model with mutual friction and thermal noise included. This new model allows us to determine the mutual friction coefficient \(\varvec{\alpha }\) and \(\varvec{\alpha '}\) for the truncated Gross–Pitaevskii equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. W.F. Vinen, J.J. Niemela, Quantum turbulence. J. Low Temp. Phys. 128(5), 167–231 (2002). https://doi.org/10.1023/A:1019695418590

    Article  ADS  Google Scholar 

  2. W.F. Vinen, D. Shoenberg, The detection of single quanta of circulation in liquid helium ii. Proc. R. Soc. London Series A Math. Phys. Sci. 260(1301), 218–236 (1961). https://doi.org/10.1098/rspa.1961.0029

    Article  ADS  Google Scholar 

  3. H.E. Hall, W.F. Vinen, D. Shoenberg, The rotation of liquid helium ii i. experiments on the propagation of second sound in uniformly rotating helium ii. Proc. R. Soc. London Series A Math. Phys. Sci. 238(1213), 204–214 (1956). https://doi.org/10.1098/rspa.1956.0214

    Article  ADS  Google Scholar 

  4. H.E. Hall, W.F. Vinen, D. Shoenberg, The rotation of liquid helium ii ii. the theory of mutual friction in uniformly rotating helium ii. Proc. R. Soc. London Series A Math. Phys. Sci. 238(1213), 215–234 (1956). https://doi.org/10.1098/rspa.1956.0215

    Article  ADS  MATH  Google Scholar 

  5. I. Bekarevich, I. Khalatnikov, Phenomenological derivation of the equations of vortex motion in He II. Sov. Phys. JETP 13, 643–646 (1961)

    Google Scholar 

  6. K.W. Schwarz, Three-dimensional vortex dynamics in superfluid \(^{4}\rm He \): line-line and line-boundary interactions. Phys. Rev. B 31, 5782–5804 (1985). https://doi.org/10.1103/PhysRevB.31.5782

    Article  ADS  Google Scholar 

  7. K.W. Schwarz, Three-dimensional vortex dynamics in superfluid \(^{4}\rm He \): homogeneous superfluid turbulence. Phys. Rev. B 38, 2398–2417 (1988). https://doi.org/10.1103/PhysRevB.38.2398

    Article  ADS  Google Scholar 

  8. D. Kivotides, C.F. Barenghi, D.C. Samuels, Triple vortex ring structure in superfluid helium II. Science 290(5492), 777–779 (2000)

    Article  ADS  Google Scholar 

  9. S. Yui, M. Tsubota, H. Kobayashi, Three-dimensional coupled dynamics of the two-fluid model in superfluid He 4: deformed velocity profile of normal fluid in thermal counterflow. Phys. Rev. Lett. 120(15), 155301 (2018). https://doi.org/10.1103/PhysRevLett.120.155301

    Article  ADS  Google Scholar 

  10. L. Galantucci, G. Krstulovic, C.F. Barenghi, Friction-enhanced lifetime of bundled quantum vortices. Phys. Rev. Fluids 8(1), 014702 (2023). https://doi.org/10.1103/PhysRevFluids.8.014702

    Article  ADS  Google Scholar 

  11. L. Galantucci, A.W. Baggaley, C.F. Barenghi, G. Krstulovic, A new self-consistent approach of quantum turbulence in superfluid helium. Eur. Phys. J. Plus (2020). https://doi.org/10.1140/epjp/s13360-020-00543-0

    Article  Google Scholar 

  12. C.W. Gardiner, P. Zoller, Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate. Phys. Rev. A 61, 033601 (2000)

    Article  ADS  Google Scholar 

  13. C.W. Gardiner, J.R. Anglin, T.I.A. Fudge, The stochastic Gross-Pitaevskii equation. J. Phys. B: At. Mol. Opt. Phys. 35, 1555–1582 (2002)

    Article  ADS  Google Scholar 

  14. E. Calzetta, B.L. Hu, E. Verdaguer, Stochastic Gross–Pitaevsky equation for BEC via coarse-graiend effective action. Int. J. Mod. Phys. B 21, 4239–4247 (2007)

    Article  ADS  MATH  Google Scholar 

  15. N.G. Berloff, M. Brachet, N.P. Proukakis, Modeling quantum fluid dynamics at nonzero temperatures. Proc. Natl Acad. Sci. 111(1), 4675–4682 (2014). https://doi.org/10.1073/pnas.1312549111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. C. Coste, Nonlinear Schrödinger equation and superfluid hydrodynamics. Eur. Phys. J. B-Condens. Matter Compl. Syst. 1, 245–253 (1998)

    Article  Google Scholar 

  17. M. Brachet, G. Sadaka, Z. Zhang, V. Kalt, I. Danaila. Coupling Navier–Stokes and Gross–Pitaevskii equations for the numerical simulation of two-fluid quantum flows. arXiv preprint arXiv:2211.07361 (2022)

  18. N.P. Proukakis, B. Jackson, Finite-temperature models of Bose–Einstein condensation. J. Phys. B 41(20), 203002 (2008). https://doi.org/10.1088/0953-4075/41/20/203002

    Article  ADS  Google Scholar 

  19. M.J. Davis, S.A. Morgan, K. Burnett, Simulations of bose fields at finite temperature. Phys. Rev. Lett. 87(16), 160402 (2001). https://doi.org/10.1103/PhysRevLett.87.160402

    Article  ADS  Google Scholar 

  20. G. Krstulovic, M. Brachet, Energy cascade with small-scale thermalization, counterflow metastability, and anomalous velocity of vortex rings in Fourier-truncated Gross-Pitaevskii equation. Phys. Rev. E 83(6), 066311 (2011). https://doi.org/10.1103/PhysRevE.83.066311

    Article  ADS  Google Scholar 

  21. G. Krstulovic, M. Brachet, Dispersive bottleneck delaying thermalization of turbulent Bose–Einstein condensates. Phys. Rev. Lett. 106, 115303 (2011). https://doi.org/10.1103/PhysRevLett.106.115303

    Article  ADS  Google Scholar 

  22. G. Krstulovic, M. Brachet, Anomalous vortex-ring velocities induced by thermally excited Kelvin waves and counterflow effects in superfluids. Phys. Rev. B 83, 132506 (2011). https://doi.org/10.1103/PhysRevB.83.132506

    Article  ADS  Google Scholar 

  23. E.P. Gross, Structure of a quantized vortex in boson systems. Il Nuovo Cimento (1955-1965) 20(3), 454–477 (1961). https://doi.org/10.1007/BF02731494

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Pitaevskii, Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13(2), 451–454 (1961)

    MathSciNet  Google Scholar 

  25. C. Nore, M. Abid, M.E. Brachet, Decaying kolmogorov turbulence in a model of superflow. Phys. Fluids 9(9), 2644–2669 (1997). https://doi.org/10.1063/1.869473

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. C. Nore, M. Abid, M. Brachet, Kolmogorov turbulence in low-temperature superflows. Phys. Rev. Lett. 78(20), 3896–3899 (1997). https://doi.org/10.1103/PhysRevLett.78.3896

    Article  ADS  Google Scholar 

  27. C. Nore, M. Brachet, S. Fauve, Numerical study of hydrodynamics using the nonlinear Schrödinger equation. Phys. D 65(1–2), 154–162 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Gérard, The cauchy problem for the Gross–Pitaevskii equation. Annales de l’Institut Henri Poincaré C, Analyse non linéaire 23(5), 765–779 (2006). https://doi.org/10.1016/j.anihpc.2005.09.004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. R.J. Donnelly, Quantized Vortices in Helium II (Cambridge University Press, 1991)

  30. W. Thomson, Vibrations of a columnar vortex. London Edinburgh Dublin Philos. Mag. J. Sci. 10(61), 155–168 (1880). https://doi.org/10.1080/14786448008626912

    Article  MATH  Google Scholar 

  31. P.H. Roberts, On vortex waves in compressible fluids II. The condensate vortex. Proc. R. Soc. London Series A Math. Phys. Eng. Sci. 459(2031), 597–607 (2003). https://doi.org/10.1098/rspa.2002.1033

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. U. Giuriato, G. Krstulovic, S. Nazarenko, How trapped particles interact with and sample superfluid vortex excitations. Phys. Rev. Res. 2, 023149 (2020). https://doi.org/10.1103/PhysRevResearch.2.023149

    Article  Google Scholar 

  33. L.S. Da Rios. Sul moto d’un liquido indefinito con un filetto vorticoso di forma qualunque 22(1), 117–135. https://doi.org/10.1007/BF03018608

  34. D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods (SIAM, Philadelphia, 1977)

    Book  MATH  Google Scholar 

  35. G. Krstulovic. A theoretical description of vortex dynamics in superfluids. kelvin waves,reconnections and particle-vortex , Habilitation à diriger des recherches. Universite Côte d’Azur. (2020)

  36. C. Connaughton, C. Josserand, A. Picozzi, Y. Pomeau, S. Rica, Condensation of classical nonlinear waves. Phys. Rev. Lett. 95(26), 263901 (2005). https://doi.org/10.1103/PhysRevLett.95.263901

    Article  ADS  Google Scholar 

  37. N.G. Berloff, A.J. Youd, Dissipative dynamics of superfluid vortices at nonzero temperatures. Phys. Rev. Lett. 99(14), 4 (2007). https://doi.org/10.1103/PhysRevLett.99.145301

    Article  Google Scholar 

  38. C. Nore, M.E. Brachet, E. Cerda, E. Tirapegui, Scattering of first sound by superfluid vortices. Phys. Rev. Lett. 72, 2593–2595 (1994). https://doi.org/10.1103/PhysRevLett.72.2593

    Article  ADS  Google Scholar 

  39. L. Kiknadze, Y. Mamaladze, The waves on the vortex ring in He ii. J. Low Temp. Phys. 126(1–2), 321–326 (2002)

    Article  ADS  Google Scholar 

  40. C.F. Barenghi, R. Hanninen, M. Tsubota, Anomalous translational velocity of vortex ring with finite-amplitude kelvin waves. Phys. Rev. E 74(4), 046303 (2006). https://doi.org/10.1103/PhysRevE.74.046303

    Article  ADS  MathSciNet  Google Scholar 

  41. U. Giuriato, G. Krstulovic, Interaction between active particles and quantum vortices leading to Kelvin wave generation. Sci. Rep. 9(1), 4839 (2019). https://doi.org/10.1038/s41598-019-39877-w

    Article  ADS  Google Scholar 

  42. G. Krstulovic, Kelvin-wave cascade and dissipation in low-temperature superfluid vortices. Phys. Rev. E 86(5), 055301 (2012). https://doi.org/10.1103/PhysRevE.86.055301

    Article  ADS  Google Scholar 

  43. A. Villois, G. Krstulovic, D. Proment, H. Salman, A vortex filament tracking method for the Gross–Pitaevskii model of a superfluid. J. Phys. A: Math. Theor. 49(41), 415502 (2016). https://doi.org/10.1088/1751-8113/49/41/415502. (Accessed 2020-02-29)

    Article  MathSciNet  MATH  Google Scholar 

  44. U. Giuriato, G. Krstulovic, Stochastic motion of finite-size immiscible impurities in a dilute quantum fluid at finite temperature. Phys. Rev. B 103, 024509 (2021). https://doi.org/10.1103/PhysRevB.103.024509

    Article  ADS  Google Scholar 

  45. R.J. Donnelly, C.F. Barenghi. The observed properties of liquid helium at the saturated vapor pressure. J. Phys. Chem. Reference Data 27(6), 1217–1274 (1998). https://doi.org/10.1063/1.556028. tex.eprint: https://pubs.aip.org/aip/jpr/article-pdf/27/6/1217/11342901/1217_1_online.pdf

  46. N.G. Berloff, P.H. Roberts, Motions in a bose condensate: VI. Vortices in a nonlocal model. J. Phys. A Math. General 32(30), 5611–5625 (1999). https://doi.org/10.1088/0305-4470/32/30/308

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. N.P. Müller, G. Krstulovic, Critical velocity for vortex nucleation and roton emission in a generalized model for superfluids. Phys. Rev. B 105(1), 014515 (2022). https://doi.org/10.1103/PhysRevB.105.014515

    Article  ADS  Google Scholar 

  48. N.P. Müller, G. Krstulovic, Kolmogorov and Kelvin wave cascades in a generalized model for quantum turbulence. Phys. Rev. B 102(13), 134513 (2020). https://doi.org/10.1103/PhysRevB.102.134513

    Article  ADS  Google Scholar 

Download references

Acknowledgements

G.K. was supported by the Agence Nationale de la Recherche through the project GIANTE ANR-18-CE30-0020-01. M.E.B. acknowledges support from the French Agence Nationale de la Recherche (ANR QUTE-HPC Project No. ANR-18-CE46-0013).This work was granted access to the HPC resources of GENCI under the allocation 2019-A0072A11003 made by GENCI. Computations were also carried out at the Mésocentre SIGAMM hosted at the Observatoire de la Côte d’Azur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Krstulovic.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krstulovic, G., Brachet, M.E. Kelvin Waves, Mutual Friction, and Fluctuations in the Gross–Pitaevskii Model. J Low Temp Phys 212, 321–341 (2023). https://doi.org/10.1007/s10909-023-02985-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02985-z

Keywords

Navigation