Skip to main content
Log in

Unconventional Temperature-Dependent Critical Current in the Fe-Based Hybrid Josephson Junction with a Metallic Barrier

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We use the multiband Fe-based superconductor (FeSC) Ba0.5K0.5Fe2As2 and the conventional superconductor Nb to fabricate a hybrid Josephson junction where an Al layer serves as a highly transparent barrier. Detailed electrical transportations are studied including the Shapiro steps and the Fraunhofer-like pattern, which indicate strong Josephson effects. An unusual temperature-dependent critical current was observed, which cannot be well described by the conventional Ambegaokar–Baratoff relation. We utilize a model considering both multiband properties in the FeSC and the conventional superconductor/normal metal/superconductor Josephson junction theory, proving that this temperature dependence on critical current is attributed to the barrier transparency of the Josephson junction. We hope our studies can be a reference for the applications or physics research of FeSC Josephson junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. H. Hosono, K. Kuroki, Physica C 514, 399 (2015). https://doi.org/10.1016/j.physc.2015.02.020

    Article  ADS  Google Scholar 

  2. Q. Si et al., Nat. Rev. Mater. 1, 16017 (2016). arXiv.1503.04223

  3. H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 279 (2018). https://doi.org/10.1016/j.mattod.2017.09.006

    Article  Google Scholar 

  4. I.I. Mazin, Nature 464, 183 (2010). https://doi.org/10.1038/nature08914

    Article  ADS  Google Scholar 

  5. J. Ph Reid, A. Juneau-Fecteau, R.T. Gordon, S. Ren de Cotret, N. Doiron-Leyraud, X.G. Luo, H. Shakeripour, J. Chang, M.A. Tanatar, H. Kim, R. Prozorov, T. Saito, H. Fukazawa, Y. Kohori, K. Kihou, C.H. Lee, A. Iyo, H. Eisaki, B. Shen, H.H. Wen, L. Taillefer, Supercond. Sci. Technol. 25, 084013 (2012). https://doi.org/10.1088/0953-2048/25/8/084013

    Article  ADS  Google Scholar 

  6. T. Böhm, A.F. Kemper, B. Moritz, F. Kretzschmar, B. Muschler, H.-M. Eiter, R. Hackl, T.P. Devereaux, D.J. Scalapino, H.-H. Wen, Phys. Rev. X 4, 041046 (2014). https://doi.org/10.1103/PhysRevX.4.041046

    Article  Google Scholar 

  7. J. Li, P.J. Pereira, J. Yuan, Y.Y. Lv, M.P. Jiang, D. Lu, Z.Q. Lin, Y.J. Liu, J.F. Wang, L. Li, X. Ke, G. Van Tendeloo, M.Y. Li, H.L. Feng, T. Hatano, H.B. Wang, P.H. Wu, K. Yamaura, E. Takayama-Muromachi, J. Vanacken, L.F. Chibotaru, V.V. Moshchalkov, Nat. Commun. 8, 1880 (2017). https://doi.org/10.1038/s41467-017-02016-y

    Article  ADS  Google Scholar 

  8. Y. Yerin, A.N. Omelyanchouk, Low Temp. Phys. 43, 1013 (2017). https://doi.org/10.1063/1.5004444

    Article  ADS  Google Scholar 

  9. H.J. Grafe, D. Paar, G. Lang, N.J. Curro, G. Behr, J. Werner, J. Hamann-Borrero, C. Hess, N. Leps, R. Klingeler, B. Buchner, Phys. Rev. Lett. 101, 047003 (2008). https://doi.org/10.1103/PhysRevLett.101.047003

    Article  ADS  Google Scholar 

  10. A.D. Christianson, E.A. Goremychkin, R. Osborn, S. Rosenkranz, M.D. Lumsden, C.D. Malliakas, I.S. Todorov, H. Claus, D.Y. Chung, M.G. Kanatzidis, R.I. Bewley, T. Guidi, Nature 456, 930 (2008). https://doi.org/10.1038/nature07625

    Article  ADS  Google Scholar 

  11. P. Richard, T. Sato, K. Nakayama, T. Takahashi, H. Ding, Rep. Prog. Phys. 74, 124512 (2011). https://doi.org/10.1088/0034-4885/74/12/124512

    Article  ADS  Google Scholar 

  12. J. Li, Y.F. Guo, Z.R. Yang, Supercond. Sci. Tech. 29, 053001 (2016). https://doi.org/10.1088/0953-2048/29/5/053001

    Article  ADS  Google Scholar 

  13. H. Yang, Z. Wang, D. Fang, Q. Deng, Q.H. Wang, Y.Y. Xiang, Y. Yang, H.H. Wen, Nat. Commun. 4, 2749 (2013). https://doi.org/10.1038/ncomms3749

    Article  ADS  Google Scholar 

  14. W.H. Tian, Y.Y. Lv, Z.Y. Xu, H.L. Zhang, S.X. Chen, S.N. Dong, J. Li, Y.N. Wang, D. Kolle, R. Kleiner, H.B. Wang, P.H. Wu, Supercond. Sci. Tech. 33, 025014 (2020). https://doi.org/10.1088/1361-6668/ab601f

    Article  ADS  Google Scholar 

  15. T. Katase, Y. Ishimaru, A. Tsukamoto, H. Hiramatsu, T. Kamiya, K. Tanabe, H. Hosono, Appl. Phys. Lett. 96, 142507 (2010). https://doi.org/10.1063/1.3371814

    Article  ADS  Google Scholar 

  16. A.A. Kalenyuk, A. Pagliero, E.A. Borodianskyi et al., Supercond. Sci. Tech. 120, 067001 (2018). https://doi.org/10.1103/PhysRevLett.120.067001

    Article  Google Scholar 

  17. X.H. Zhang, Y.S. Oh, Y. Liu, L. Yan, K.H. Kim, R.L. Greene, I. Takeuchi, Phys. Rev. Lett. 102, 147002 (2009). https://doi.org/10.1103/PhysRevLett.102.147002

    Article  ADS  Google Scholar 

  18. S. Schmidt, S. Döring, F. Schmidl, V. Grosse, P. Seidel, K. Iida, F. Kurth, S. Haindl, I. M¨onch, B. Holzapfel, Appl. Phys. Lett. 97, 172504 (2010). https://doi.org/10.1063/1.3505526

    Article  ADS  Google Scholar 

  19. A.V. Burmistrova, I.A. Devyatov, A.A. Golubov, K. Yada, Y. Tanaka, M. Tortello, R.S. Gonnelli, V.A. Stepanov, X. Ding, H.-H. Wen, L.H. Greene, Phys. Rev. B 91, 214501 (2015). https://doi.org/10.1103/PhysRevB.91.214501

    Article  ADS  Google Scholar 

  20. Y. Ota, N. Nakai, H. Nakamura, M. Machida, D. Inotani, Y. Ohashi, T. Koyama, H. Matsumoto, Phys. Rev. B 81, 214511 (2010). https://doi.org/10.1103/PhysRevB.81.214511

    Article  ADS  Google Scholar 

  21. V. Ambegaokar, A. Baratoff, Phys. Rev. Lett. 10, 486–489 (1963). https://doi.org/10.1103/PhysRevLett.10.486

    Article  ADS  Google Scholar 

  22. K.D. Usadel, Phys. Rev. Lett. 25, 507–509 (1970). https://doi.org/10.1103/PhysRevLett.25.507

    Article  ADS  Google Scholar 

  23. A.V. Zaitsev, Sov. Phys. Jetp. 59, 5 (1984)

    Google Scholar 

  24. G. Eilenberger, Z. Physik 214, 195–213 (1968). https://doi.org/10.1007/BF01379803

    Article  ADS  Google Scholar 

  25. A.A. Golubov, M.Y. Kupriyanov, E. Il’ichev, Rev. Mod. Phys. 76, 411–469 (2004). https://doi.org/10.1103/RevModPhys.76.411

    Article  ADS  Google Scholar 

  26. I.O. Kulik, A.N. Omel’yanchouk, Sov. J. Low Temp. Phys. (Engl. Transl.); (United States) 3:7 (1977)

  27. H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba, A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G.F. Chen, J.L. Luo, N.L. Wang, EPL 83, 47001 (2008). https://doi.org/10.1209/0295-5075/83/47001

    Article  ADS  Google Scholar 

  28. W. Haberkorn, H. Knauer, J. Richter, Phys. Status Solidi A 47, K161–K164 (1978). https://doi.org/10.1002/pssa.2210470266

    Article  ADS  Google Scholar 

  29. N. Nakai, H. Nakamura, Y. Ota, Y. Nagai, N. Hayashi, M. Machida, Phys. Rev. B 82, 094501 (2010). https://doi.org/10.1103/PhysRevB.82.094501

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Scientific Research Foundation for the Ph.D. (Nanjing Institute of Technology, No. YKJ2019108, YKJ2019109), Jiangsu Province Double Innovation Doctor.

Funding

This work was supported by scientific Research Foundation for the Ph.D. (Nanjing Institute of Technology, No. YKJ2019108, YKJ2019109).

Author information

Authors and Affiliations

Authors

Contributions

HZ and WT wrote the main manuscript text. All authors reviewed the manuscript.

Corresponding author

Correspondence to Wanghao Tian.

Ethics declarations

Conflict of interest

The author declares that he has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Zhang, D., Shao, W. et al. Unconventional Temperature-Dependent Critical Current in the Fe-Based Hybrid Josephson Junction with a Metallic Barrier. J Low Temp Phys 213, 70–79 (2023). https://doi.org/10.1007/s10909-023-02984-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02984-0

Keywords

Navigation