Skip to main content
Log in

Low-Temperature Thermally Induced Noise in the Presence of an AC Voltage Bias

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

As microelectronics evolve into nanoelectronics with faster switching speeds and the associated energy dissipation, determining local temperature and temperature gradients becomes an increasingly important challenge for solving design and manufacturing problems as well as improving reliability. Recently, experimental studies of low-temperature quantum thermal phenomena, in which heat is ruled by quantum physics, have been developing at an ever-increasing pace. A fundamental issue posed by finite temperatures is spontaneous fluctuations of electric currents occurring inside electrical conductors even in equilibrium, regardless of any applied voltage (the Johnson-Nyquist noise). A new (previously overlooked) out-of-equilibrium contribution to noise in a temperature-biased nanoscale conductive structure was discovered and called delta-T noise. In this paper, we argue that, along with stationary characteristics, both techniques can be successfully used to reveal periodic (AC) voltage fluctuations or increase the sensitivity of the temperature monitoring in a cryogenic environment when other thermodynamic approaches lose sensitivity or cease to operate. Our calculations based on the scattering theory of nonlinear AC quantum transport show that related zero-frequency as well as frequency-dependent noise spectra reflect the amplitude and the frequency of periodic AC fluctuations. Such probing, which is most effective at ultra-low temperatures, can provide important for nanoelectronics and sensing technologies information about local thermally induced dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Datasets are available from the corresponding author on request.

Code Availability

Software application is available from the corresponding author on request.

References

  1. P.R.N. Childs, Nanoscale thermometry and temperature measurement, in Thermometry at the Nanoscale: Techniques and Selected Applications, ed. By L.D. Carlos, F. Palacio, and F.P. Parada (RSC Publ., London, 2015), ch. 1

  2. Y. Shabany, Heat transfer: thermal management of electronics (CRC Press, Boca Raton, 2009), p.523

    Book  Google Scholar 

  3. G. Benenti, D. Donadio, S. Lepri, R. Livi, Non-Fourier heat transport in nanosystems, Preprint arXiv:2212.09374v1 [cond-mat.stat-mech] (2022). https://doi.org/10.48550/arXiv.2212.09374

  4. D. Chakraborty, H. Karamitaheri, L. de Sousa Oliveira, N. Neophytou, Effect of wave versus particle phonon nature in thermal transport through nanostructures, Comput. Mater. Sci. 180, 109712 (2020). https://doi.org/10.1016/j.commatsci.2020.109712

  5. M. Scigliuzzo, A. Bengtsson, J.-C. Besse, A. Wallraff, P. Delsing, S. Gasparinetti, Primary thermometry of propagating microwaves in the quantum regime, Phys. Rev. X 10, 041054 (2020). https://doi.org/10.1103/PhysRevX.10.041054

  6. E.S. Tikhonov, D.V. Shovkun, D. Ercolani, F. Rossella, M. Rocci, L. Sorba, S. Roddaro, V.S. Khrapai, Noise thermometry applied to thermoelectric measurements in InAs nanowires, Semicond. Sci. Technol. 31, 104001 (2016). https://doi.org/10.1088/0268-1242/31/10/104001

  7. J.F. Qu, S.P. Benz, H. Rogalla, W.L. Tew, D.R. White, K.L. Zhou, Johnson noise thermometry, Meas. Sci. Technol. 30, 112001 (2019). https://doi.org/10.1088/1361-6501/ab3526

  8. O.S. Lumbroso, L. Simine, A. Nitzan, D. Segal, O. Tal, Electronic noise due to temperature differences in atomic-scale junctions. Nature 562, 240 (2018). https://doi.org/10.1038/s41586-018-0592-2

    Article  ADS  Google Scholar 

  9. E. Sivre, H. Duprez, A. Anthore, A. Aassime, F.D. Parmentier, A. Cavanna, A. Ouerghi, U. Gennser, F. Pierre, Electronic heat flow and thermal shot noise in quantum circuits. Nat. Commun. 10, 5638 (2019). https://doi.org/10.1038/s41467-019-13566-8

    Article  ADS  Google Scholar 

  10. J. Eriksson, M. Acciai, L. Tesser, J. Splettstoesser, General bounds on electronic shot noise in the absence of currents, Phys. Rev. Lett. 127, 136801 (2021). https://doi.org/10.1103/PhysRevLett.127.136801

  11. L. Tesser, M. Acciai, C. Spånslätt, J. Monsel, J. Splettstoesser, Charge, spin, and heat shot noises in the absence of average currents: Conditions on bounds at zero and finite frequencies, Phys. Rev. B 107, 075409 (2023). https://doi.org/10.1103/PhysRevB.107.075409

  12. M. Hübler, W. Belzig, Light emission in delta-T-driven mesoscopic conductors. Phys. Rev. B 107, 155405 (2023). https://doi.org/10.1103/PhysRevB.107.155405

  13. P. Sternativo, F. Dolcini, Effects of disorder on electron tunneling through helical edge states, Phys. Rev. B 90, 125135 (2014). https://doi.org/10.1103/PhysRevB.90.125135

  14. K. Kobayashi, M. Hashisaka, Shot noise in mesoscopic systems: From single particles to quantum liquids, J. Phys. Soc. Jpn. 90, 102001 (2021). https://doi.org/10.7566/JPSJ.90.102001

  15. Y.M. Blanter, M. Büttiker, Shot noise in mesoscopic conductors. Phys. Rep. 336, 1 (2000). https://doi.org/10.1016/S0370-1573(99)00123-4

    Article  ADS  Google Scholar 

  16. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Transition from metallic to tunneling regimes in superconducting microconstrictions: Excess current, charge imbalance, and supercurrent conversion. Phys. Rev. B 25, 4515 (1982). https://doi.org/10.1103/PhysRevB.25.4515

    Article  ADS  Google Scholar 

  17. M. Belogolovskii, E. Zhitlukhina, Junction spectroscopy of superconductors, in A Comprehensive Guide to Superconductivity, ed. By R. Morrow (Nova, Hauppauge, 2021), ch. 2

  18. M.A. Belogolovskii, Y.F. Revenko, A.Y. Gerasimenko, V.M. Svistunov, E. Hatta, G. Plitnik, V.E. Shaternik, E.M. Rudenko, Inelastic electron tunneling across magnetically active interfaces in cuprate and manganite heterostructures modified by electromigration processes. Low Temp. Phys. 28, 391 (2002). https://doi.org/10.1063/1.1491178

    Article  ADS  Google Scholar 

  19. M.V. Moskalets, Scattering matrix approach to non-stationary quantum transport (Imperial College Press, London, 2012), pp.63–110

    MATH  Google Scholar 

  20. M.H. Pedersen, M. Büttiker, Scattering theory of photon-assisted electron transport. Phys. Rev. B 58, 12993 (1998). https://doi.org/10.1103/PhysRevB.58.12993

    Article  ADS  Google Scholar 

  21. M. Büttiker, Time-dependent transport in mesoscopic structures. J. Low Temp. Phys. 118, 519 (2000). https://doi.org/10.1023/A:1004622924099

    Article  ADS  Google Scholar 

  22. T.C. O’Haver, An introduction to signal processing in chemical measurement. J. Chem. Educ. 68, A147 (1991). https://doi.org/10.1021/ed068pA147

    Article  Google Scholar 

  23. S.R.E. Yang, Quantum shot noise spectrum of a point contact. Solid State Commun. 81, 375 (1992). https://doi.org/10.1016/0038-1098(92)90760-7

    Article  ADS  Google Scholar 

  24. M.L. McGlashan, The international temperature scale of 1990 (ITS-90). J. Chem. Thermodyn. 22, 653 (1990). https://doi.org/10.1016/0021-9614(90)90018-L

    Article  Google Scholar 

  25. E. Scheer, W. Belzig, Unexpected noise from hot electrons. Nature 562, 200 (2018). https://doi.org/10.1038/d41586-018-06932-x

    Article  ADS  Google Scholar 

  26. C. Altimiras, H. le Sueur, U. Gennser, A. Anthore, A. Cavanna, D. Mailly, and F. Pierre. Chargeless heat transport in the fractional quantum Hall regime. Phys. Rev. Lett. 109, 026803 (2012). https://doi.org/10.1103/PhysRevLett.109.026803

  27. M. Li, G. Chen, Thermal transport for probing quantum materials. MRS Bulletin 45, 348 (2020). https://doi.org/10.1557/mrs.2020.124

Download references

Funding

This work was partly supported by the German-Ukrainian collaborative project “Controllable quantum-information transfer in superconducting networks” (DFG project SE 664/21–1, No. 405579680). M.B. is grateful for the financial support from Volkswagen Stiftung under the grant 9B884 “Novel quantum platforms for cryogenic sensing and stochastic computing.”

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to the work.

Corresponding author

Correspondence to Elena Zhitlukhina.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest and/or competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhitlukhina, E., Belogolovskii, M. & Seidel, P. Low-Temperature Thermally Induced Noise in the Presence of an AC Voltage Bias. J Low Temp Phys 212, 79–88 (2023). https://doi.org/10.1007/s10909-023-02975-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02975-1

Keywords

Navigation