Skip to main content
Log in

Thermodynamic Properties of Electron Gas in Semiconductor Nanowires

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Expressions are given for the concentration, density of thermodynamic states, entropy, and heat capacity of the electron gas in narrow-gap InAs nanowires, and it is shown that they are of an oscillatory nature. At low temperatures, the oscillations manifest themselves quite distinctly, and they are smoothed out with increasing temperature. Graphs of the dependence of the thermodynamic quantities of the electron gas on the chemical potential for electrons with a nonparabolic zone are steeper than those with a parabolic zone. It has been established that an increase in the nonparabolicity of the energy bands will lead to a weakening of the oscillations of the thermodynamic quantities of the electron gas. The temperature dependences of the concentration, density of thermodynamic states of entropy and heat capacity of the electron gas in InAs nanowires are found when the chemical potential \(\mu\) and energy levels \(E_{(N,L)}\) satisfy the following relation \(\mu <E_{(N,L)}\), \(\mu =E_{(N,L)}\), and \(\mu >E_{(N,L)}\). It has been established that the concentration, density of thermodynamic states, entropy and heat capacity of the electron gas at resonance points (when \(\mu =E_{(N,L)}\)) do not depend on the energy level \(E_{(N,L)}\). It is shown that the entropy and density of thermodynamic states reach their peak values at resonance points, while the heat capacity is around the resonance point

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. A. Aydin, A. Sisman, Quantum shape effects and novel thermodynamic behaviors at nanoscale. Phys. Lett. A 383(7), 655–665 (2019). https://doi.org/10.1016/j.physleta.2019.01.009

    Article  ADS  Google Scholar 

  2. A. Aydin, A. Sisman, Discrete nature of thermodynamics in confined ideal fermi gases. Phys. Lett. A 378(30), 2001–2007 (2014). https://doi.org/10.1016/j.physleta.2014.05.044

    Article  ADS  MATH  Google Scholar 

  3. C. Firat, A. Sisman, A. Aydin, Characterization of density oscillations in confined and degenerate fermi gases. Mod. Phys. Lett. B 32(32), 1850393 (2018). https://doi.org/10.1142/S0217984918503931

    Article  ADS  MathSciNet  Google Scholar 

  4. R. Khordad, H. Rastegar Sedehi, H. Bahramiyan, Effects of impurity and cross-sectional shape on entropy of quantum wires. J. Comput. Electron. 17(2), 551–561 (2018). https://doi.org/10.1007/s10825-018-1133-9

    Article  Google Scholar 

  5. G. Gulyamov, A. Davlatov, K.N. Juraev, Concentration, thermodynamic density of states, and entropy of electrons in semiconductor nanowires. Low Temp. Phys. 48(2), 148–156 (2022). https://doi.org/10.1063/10.0009295

    Article  ADS  Google Scholar 

  6. P.J. Baymatov, A.G. Gulyamov, A.B. Davlatov, B.B. Uzakov, Broadening thermal energy levels and density states quasi one-dimensional electron gas. J. Appl. Math. Phys. 04, 706–710 (2016). https://doi.org/10.4236/jamp.2016.44081

    Article  Google Scholar 

  7. I. Knezevic, E.B. Ramayya, D. Vasileska, S.M. Goodnick, Diffusive transport in quasi-2D and quasi-1D electron systems. J. Comput. Theor. Nanosci. 6(8), 1725–1753 (2009). https://doi.org/10.1166/jctn.2009.1240

    Article  Google Scholar 

  8. K. Jansson, E. Lind, L.-E. Wernersson, Intrinsic performance of InAs nanowire capacitors. IEEE Trans. Electron Dev. 61(2), 452–459 (2014). https://doi.org/10.1109/TED.2013.2293456

    Article  ADS  Google Scholar 

  9. B. Yu, L. Wang, Y. Yuan, P.M. Asbeck, Y. Taur, Scaling of nanowire transistors. IEEE Trans. Electron Dev. 55(11), 2846–2858 (2008). https://doi.org/10.1109/TED.2008.2005163

    Article  ADS  Google Scholar 

  10. A. Godoy, Z. Yang, U. Ravaioli, F. Gámiz, Effects of nonparabolic bands in quantum wires. J. Appl. Phys. 98(1), 013702 (2005). https://doi.org/10.1063/1.1940143

    Article  ADS  Google Scholar 

  11. V.A. Altschul, A. Fraenkel, E. Finkman, Effects of band nonparabolicity on two-dimensional electron gas. J. Appl. Phys. 71(9), 4382–4384 (1992). https://doi.org/10.1063/1.350775

    Article  ADS  Google Scholar 

  12. L. Wang, P.M. Asbeck, Y. Taur, Self-consistent 1-D schrödinger-poisson solver for III–V heterostructures accounting for conduction band non-parabolicity. Solid-State Electron. 54(11), 1257–1262 (2010). https://doi.org/10.1016/j.sse.2010.06.018

    Article  ADS  Google Scholar 

  13. C.P. Lima, F.M.S. Lima, A.L.A. Fonseca, O.A.C. Nunes, Magnetic field effect on the laser-driven density of states for electrons in a cylindrical quantum wire: transition from one-dimensional to zero-dimensional behavior. New J. Phys. 13(7), 073005 (2011). https://doi.org/10.1088/1367-2630/13/7/073005

    Article  ADS  Google Scholar 

  14. F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, M.A. Amato, C.P. Lima, E.F. da Silva, Terahertz laser-induced 1D–0D crossover in the density of states for electrons in a cylindrical semiconductor quantum wire. Solid State Commun. 149(17), 678–681 (2009). https://doi.org/10.1016/j.ssc.2009.02.017

    Article  ADS  Google Scholar 

  15. F.M.S. Lima, O.A.C. Nunes, A.L.A. Fonseca, M.A. Amato, E.F. da Silva, Effect of a terahertz laser field on the electron-DOS in a GaAs/AlGaAs cylindrical quantum wire: finite well model. Semicond. Sci. Technol. 23(12), 125038 (2008). https://doi.org/10.1088/0268-1242/23/12/125038

    Article  ADS  Google Scholar 

  16. A. Radu, Transverse laser dressing effects on the subband density of states in a 20-nm-wide GaAs/Al\(_{0.3}\)Ga\(_{0.7}\)As quantum well wire. Phys. E: Low-Dimens. Syst. Nanostruct. 44(7), 1446–1453 (2012). https://doi.org/10.1016/j.physe.2012.03.009

    Article  ADS  Google Scholar 

  17. A. Aydin, A. Sisman, Discrete density of states. Phys. Lett. A 380(13), 1236–1240 (2016). https://doi.org/10.1016/j.physleta.2016.01.034

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Khordad, R. Bornaei, H.A. Mardani-Fard, Application of Tsallis formalism to study entropy and specific heat of V-groove quantum wires. Indian J. Phys. 89(6), 545–550 (2015). https://doi.org/10.1007/s12648-014-0623-2

    Article  ADS  Google Scholar 

  19. R. Khordad, Thermodynamical properties of triangular quantum wires: entropy, specific heat, and internal energy. Contin. Mech. Thermodyn. 28(4), 947–956 (2016). https://doi.org/10.1007/s00161-015-0429-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Thermodynamics of mono-layer quantum wires with spin-orbit interaction. Eur. Phys. J. Plus 133(8), 1–10 (2018). https://doi.org/10.1140/epjp/i2018-12102-3

    Article  Google Scholar 

  21. D. Najafi, B. Vaseghi, G. Rezaei, R. Khordad, Combinations of tunneling and spin-orbit interaction effects on the thermodynamics and entropy of coaxial quantum wires. Eur. Phys. J. Plus 134(1), 1–10 (2019). https://doi.org/10.1140/epjp/i2019-12388-5

    Article  Google Scholar 

  22. V. Skobelev, Thermodynamic functions of a one-dimensional degenerate electron gas in a magnetic field. Russ. Phys. J. 54(12), 1338–1346 (2012). https://doi.org/10.1007/s11182-012-9751-3

    Article  MATH  Google Scholar 

  23. V.V. Skobelev, V.P. Krasin, Entropy and heat capacity of a degenerate neutron gas in a magnetic field. Russ. Phys. J. 62(3), 436–441 (2019). https://doi.org/10.1007/s11182-019-01731-x

    Article  Google Scholar 

  24. A.M. Ermolaev, G.I. Rashba, M.A. Solyanik, Thermodynamic functions of electron gas on the semiconductor nanotube surface in a magnetic field. Eur. Phys. J. B 73(3), 383–388 (2010). https://doi.org/10.1140/epjb/e2009-00443-5

    Article  ADS  MATH  Google Scholar 

  25. A.M. Ermolaev, G.I. Rashba, M.A. Solyanik, Heat capacity of an electron gas at the surface of a nanotube with its superlattice in a magnetic field. Low Temp. Phys. 37(10), 824–828 (2011). https://doi.org/10.1063/1.3665876

    Article  ADS  Google Scholar 

  26. Y. Khoshbakht, R. Khordad, H. Rastegar Sedehi, Magnetic and thermodynamic properties of a nanowire with Rashba spin-orbit interaction. J. Low Temp. Phys. 202(1), 59–70 (2021). https://doi.org/10.1007/s10909-020-02522-2

    Article  ADS  Google Scholar 

  27. R. Khordad, H.R. Rastegar Sedehi, Low temperature behavior of thermodynamic properties of 1d quantum wire under the Rashba spin-orbit interaction and magnetic field. Solid State Commun. 269, 118–124 (2018). https://doi.org/10.1016/j.ssc.2017.10.018

    Article  ADS  Google Scholar 

  28. D.J. Toms, Ideal fermi gases in harmonic oscillator potential traps. Ann. Phys. 320(2), 487–520 (2005). https://doi.org/10.1016/j.aop.2005.04.018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. B. Gülveren, Thermal properties of interacting electron gas in a harmonic potential. Int. J. Mod. Phys. B 26(03), 1250029 (2012). https://doi.org/10.1142/S021797921110206X

    Article  ADS  MATH  Google Scholar 

  30. E.S. Sokolova, S.S. Sokolov, N. Studart, Chemical potential of the low-dimensional multisubband fermi gas. J. Phys.: Condens. Mat. 22(46), 465304 (2010). https://doi.org/10.1088/0953-8984/22/46/465304

    Article  ADS  Google Scholar 

  31. F.J. Sevilla, Thermodynamics of low-dimensional trapped fermi gases. J. Thermodyn. 2017, 3060348 (2017). https://doi.org/10.1155/2017/3060348

    Article  Google Scholar 

  32. K.H.A. Alassafee, M.S. Omar, Debye-einstein approximation approach to calculate the lattice specific heat and related parameters for a si nanowire. J. Taibah Univ. Sci. 11(6), 1226–1231 (2017). https://doi.org/10.1016/j.jtusci.2016.11.002

    Article  Google Scholar 

  33. L. Luo, J.E. Thomas, Thermodynamic measurements in a strongly interacting fermi gas. J. Low Temp. Phys. 154(1), 1–29 (2009). https://doi.org/10.1007/s10909-008-9850-2

    Article  ADS  Google Scholar 

  34. V. Gokhfeld, On the thermodynamics of quasi-two-dimensional electron gas. Low Temp. Phys. 31(7), 583–586 (2005). https://doi.org/10.1063/1.2001638

    Article  ADS  Google Scholar 

  35. M. Grether, M. De Llano, M. Solis, Anomalous behavior of ideal fermi gas below two dimensions. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 25(3), 287–291 (2003). https://doi.org/10.1140/epjd/e2003-00205-7

    Article  Google Scholar 

  36. S. Panda, B.K. Panda, Chemical potential and internal energy of the noninteracting fermi gas in fractional-dimensional space. Pramana 75(3), 393–402 (2010). https://doi.org/10.1007/s12043-010-0125-5

    Article  ADS  Google Scholar 

  37. S. Panda, B.K. Panda, Long-wavelength quantum and classical plasma frequencies in fractional-dimensional space. J. Phys.: Condens. Matter 20(48), 485201 (2008). https://doi.org/10.1088/0953-8984/20/48/485201

    Article  Google Scholar 

  38. E.G. Marin, F.G. Ruiz, I.M. Tienda-Luna, A. Godoy, F. Gámiz, Analytical model for the threshold voltage of III–V nanowire transistors including quantum effects. Solid-State Electron. 92, 28–34 (2014). https://doi.org/10.1016/j.sse.2013.10.022

    Article  ADS  Google Scholar 

  39. G. Gulyamov, A. Davlatov, S. Inoyatov, S. Makhmudov et al., Calculation of the energy levels and wave functions of electrons in nanowires by the shooting method. J. Appl. Sci. Eng. 25(1), 31–36 (2022). https://doi.org/10.6180/jase.202202_25(1).0004

    Article  Google Scholar 

  40. G. Gulyamov, A. Gulyamov, A. Davlatov, K.N. Juraev, Energy levels in nanowires and nanorods with a finite potential well. Adv. Condens. Matter Phys. 2020, 4945080 (2020). https://doi.org/10.1155/2020/4945080

    Article  Google Scholar 

  41. G. Gulyamov, A. Gulyamov, A. Davlatov, B. Shahobiddinov, Electron energy in rectangular and cylindrical quantum wires. J. Nano- Electron. Phys. 12(4), 04023 (2020). https://doi.org/10.21272/jnep.12(4).04023

    Article  Google Scholar 

  42. D. Nelson, R. Miller, D. Kleinman, Band nonparabolicity effects in semiconductor quantum wells. Phys. Rev. B 35(14), 7770 (1987). https://doi.org/10.1103/PhysRevB.35.7770

    Article  ADS  Google Scholar 

  43. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables vol. 55. US Government printing office, Washington (1964)

  44. J.H. Davies, Phys. Low-Dimens. Semicond. Introd. (Cambridge University Press, UK, 1997). https://doi.org/10.1017/CBO9780511819070

    Book  Google Scholar 

  45. G. Allison, E.A. Galaktionov, A.K. Savchenko, S.S. Safonov, M.M. Fogler, M.Y. Simmons, D.A. Ritchie, Thermodynamic density of states of two-dimensional gaas systems near the apparent metal-insulator transition. Phys. Rev. Lett. 96, 216407 (2006). https://doi.org/10.1103/PhysRevLett.96.216407

    Article  ADS  Google Scholar 

  46. B.M. Askerov, S.R. Figarova, Quantum Statistics: Equilibrium Electron Gas. In: Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases, (Springer, Heidelberg, 2010), pp. 213–296. https://doi.org/10.1007/978-3-642-03171-7_7

Download references

Acknowledgements

The work was performed on the basis of the Fundamental Research Grant Programs FZ-20200929243 “The Effect of Hot Electrons and Phonons in a Strong Electromagnetic Field on the Characteristics of Semiconductor Solar Photovoltaic Elements and Nanostructures”

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to the manuscript.

Corresponding author

Correspondence to Abror Davlatov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davlatov, A., Gulyamov, G. & Urinboev, D. Thermodynamic Properties of Electron Gas in Semiconductor Nanowires. J Low Temp Phys 212, 36–53 (2023). https://doi.org/10.1007/s10909-023-02974-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02974-2

Keywords

Navigation