Skip to main content
Log in

Magnetic and Aharonov–Bohm Flux Fields’ Effect on Thermodynamic Properties of Nitrogen

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this work, the thermodynamic properties of the nitrogen have been theoretically studied and compared with experimental data. To this end, we have solved the Dirac equation with the spin symmetry with generalized Cornell potential using the wave function Ansatz procedure in the presence of external magnetic and Aharonov–Bohm flux field and calculated energy eigenvalues. According to obtained energy eigenvalues, we have deduced partition function and thermodynamic properties of the system by the Poisson summation formalism. We found that specific heat in constant pressure, Gibbs free energy and enthalpy are in good agreement with experimental data in the presence of external fields. Also, it is deduced that external fields have a significant effect on the thermodynamic properties of the nitrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. C.-W. Wang, J. Wang, Y.-S. Liu, J. Li, X.-L. Peng, C.-S. Jia, L.-H. Zhang, L.-Z. Yi, J.-Y. Liu, C.-J. Li, Prediction of the ideal-gas thermodynamic properties for water. J. Mol. Liq. 321, 114912 (2021)

    Article  Google Scholar 

  2. A. Ikot, U. Okorie, G. Rampho, P. Amadi, C. Edet, I. Akpan, H. Abdullah, R. Horchani, Klein–gordon equation and nonrelativistic thermodynamic properties with improved screened kratzer potential. J. Low Temp. Phys. 202, 269–289 (2021)

    Article  ADS  Google Scholar 

  3. O. Oluwadare, K. Oyewumi, T. Abiola, Thermodynamic properties of some diatomic molecules confined by an harmonic oscillating system. Indian J. Phys. 96, 1921–1928 (2022)

    Article  ADS  Google Scholar 

  4. R. Khordad, A. Ghanbari, Theoretical prediction of thermal properties of K2 diatomic molecule using generalized Mobius square potential. Int. J. Thermophys. 42, 1–15 (2021)

    Article  Google Scholar 

  5. Q.-C. Ding, C.-S. Jia, J.-Z. Liu, J. Li, R.-F. Du, J.-Y. Liu, X.-L. Peng, C.-W. Wang, H.-X. Tang, Prediction of thermodynamic properties for sulfur dimer. Chemical Physics Letters (2022) 139844.

  6. R. Khordad, A. Avazpour, A. Ghanbari, Exact analytical calculations of thermodynamic functions of gaseous substances. Chem. Phys. 517, 30–35 (2019)

    Article  Google Scholar 

  7. M. Habibinejad, A. Ghanbari, Enthalpy, Gibbs free energy and specific heat in constant pressure for diatomic molecules using improved deformed exponential-type potential (IDEP). Eur. Phys. J. Plus 136, 1–12 (2021)

    Article  Google Scholar 

  8. L.H. Zhang, X.P. Li, C.S. Jia, Approximate solutions of the Schrödinger equation with the generalized Morse potential model including the centrifugal term. Int. J. Quantum Chem. 111, 1870–1878 (2011)

    Article  Google Scholar 

  9. M. Hamzavi, S.M. Ikhdair, K.-E. Thylwe, Equivalence of the empirical shifted Deng-Fan oscillator potential for diatomic molecules. J. Math. Chem. 51, 227–238 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. O. Mustafa, A new deformed Schiöberg-type potential and ro-vibrational energies for some diatomic molecules. Phys. Scr. 90, 065002 (2015)

    Article  ADS  Google Scholar 

  11. H. Boukabcha, M. Hachama, A. Diaf, Ro-vibrational energies of the shifted Deng-Fan oscillator potential with Feynman path integral formalism. Appl. Math. Comput. 321, 121–129 (2018)

    MathSciNet  MATH  Google Scholar 

  12. A. Amrouche, A. Diaf, M. Hachama, Path integral treatment of the deformed Schiöberg-type potential for some diatomic molecules. Can. J. Phys. 95, 25–30 (2017)

    Article  ADS  Google Scholar 

  13. E. Inyang, E. William, J. Obu, Eigensolutions of the N-dimensional Schrödinger equation interacting with Varshni–Hulthen potential model. Revista mexicana de física 67, 193–205 (2021)

    Article  MathSciNet  Google Scholar 

  14. A.N. Ikot, C.O. Edet, U.S. Okorie, A.-H. Abdel-Aty, M. Ramantswana, G.J. Rampho, N.A. Alshehri, S. Elagan, S. Kaya, Solutions of the 2D Schrodinger equation and its thermal properties for improved ultra-generalized exponential hyperbolic potential (IUGE-HP). Eur. Phys. J. Plus 136, 1–18 (2021)

    Article  Google Scholar 

  15. A. Ghanbari, R. Khordad, Bound states and optical properties for Derjaguin-Landau-Verweij-Overbook potential. Opt. Quant. Electron. 53, 1–11 (2021)

    Article  Google Scholar 

  16. A. Ghanbari, R. Khordad, Theoretical prediction of thermodynamic properties of N2 and CO using pseudo harmonic and Mie-type potentials. Chem. Phys. 534, 110732 (2020)

    Article  Google Scholar 

  17. R. Khordad, A. Ghanbari, Analytical calculations of thermodynamic functions of lithium dimer using modified Tietz and Badawi-Bessis-Bessis potentials. Comput. Theor. Chem. 1155, 1–8 (2019)

    Article  Google Scholar 

  18. P.M. Morse, Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. 34, 57 (1929)

    Article  ADS  MATH  Google Scholar 

  19. E.D. Davis, Uniform approximation of wave functions with improved semiclassical transformation amplitudes and Gram-Schmidt orthogonalization. Phys. Rev. A 70, 032101 (2004)

    Article  ADS  Google Scholar 

  20. H. Konwent, P. Machnikowski, P. Magnuszewski, A. Radosz, Some properties of double-Morse potentials. J. Phys. A: Math. Gen. 31, 7541 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. V. Van Speybroeck, R. Gani, R.J. Meier, The calculation of thermodynamic properties of molecules. Chem. Soc. Rev. 39, 1764–1779 (2010)

    Article  Google Scholar 

  22. G. Valencia-Ortega, L.A. Arias-Hernandez, Thermodynamic properties of diatomic molecule systems under SO (2, 1)-anharmonic Eckart potential. Int. J. Quantum Chem. 118, e25589 (2018)

    Article  Google Scholar 

  23. A.N. Manin, A.P. Voronin, K.V. Drozd, G.L. Perlovich, Thermodynamic properties of nalidixic and oxolinic acids: experimental and computational study. Thermochim. Acta 682, 178411 (2019)

    Article  Google Scholar 

  24. A. Babanli, Specific heat of a quantum dot superlattice system in the presence of a magnetic field. J. Low Temp. Phys. (2022) 1–10.

  25. H.R. Sedehi, A. Bazrafshan, R. Khordad, Thermal properties of quantum rings in monolayer and bilayer graphene. Solid State Commun. 353, 114853 (2022)

    Article  Google Scholar 

  26. F. Nammas, E.H. Hasan, A. Alnowafa, Exact calculations of the thermal properties of two-electron GaAs quantum dots with inverse-square interactions. Can. J. Phys. 100, 60–67 (2022)

    Article  ADS  Google Scholar 

  27. C. Edet, P. Nwbabuzor, E. Ettah, C. Duque, N. Ali, A. Ikot, S. Mahmoud, M. Asjad, Magneto-transport and thermal properties of the Yukawa potential in cosmic string space-time. Results Phys. 39, 105749 (2022)

    Article  Google Scholar 

  28. C.-S. Jia, C.-W. Wang, L.-H. Zhang, X.-L. Peng, H.-M. Tang, J.-Y. Liu, Y. Xiong, R. Zeng, Predictions of entropy for diatomic molecules and gaseous substances. Chem. Phys. Lett. 692, 57–60 (2018)

    Article  ADS  Google Scholar 

  29. K.-X. Fu, M. Wang, C.-S. Jia, Improved five-parameter exponential-type potential energy model for diatomic molecules. Commun. Theor. Phys. 71, 103 (2019)

    Article  ADS  Google Scholar 

  30. P.-Q. Wang, J.-Y. Liu, L.-H. Zhang, S.-Y. Cao, C.-S. Jia, Improved expressions for the Schiöberg potential energy models for diatomic molecules. J. Mol. Spectrosc. 278, 23–26 (2012)

    Article  ADS  Google Scholar 

  31. C.-S. Jia, L.-H. Zhang, C.-W. Wang, Thermodynamic properties for the lithium dimer. Chem. Phys. Lett. 667, 211–215 (2017)

    Article  ADS  Google Scholar 

  32. S.M. Ikhdair, B.J. Falaye, M. Hamzavi, Nonrelativistic molecular models under external magnetic and AB flux fields. Ann. Phys. 353, 282–298 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. M. Eshghi, H. Mehraban, Study of a 2D charged particle confined by a magnetic and AB flux fields under the radial scalar power potential. Eur. Phys. J. Plus 132, 1–13 (2017)

    Article  Google Scholar 

  34. M. Abu-Shady, T. Abdel-Karim, E. Khokha, Exact Solution of the N-dimensional Radial Schr\" odinger Equation via Laplace Transformation Method with the Generalized Cornell Potential, arXiv:1802.02092 (2018).

  35. M. Abu-Shady, E. Khokha, Bound state solutions of the Dirac equation for the generalized Cornell potential model. Int. J. Mod. Phys. A 36, 2150195 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  36. C.-S. Jia, Z.-W. Shui, Relativistic energies for the SiC radical. Eur. Phys. J. A 51, 1–6 (2015)

    Article  Google Scholar 

  37. H. Hassanabadi, E. Maghsoodi, S. Zarrinkamar, Dirac equation with vector and scalar Cornell potentials and an external magnetic field. Ann. Phys. 525, 944–950 (2013)

    Article  MathSciNet  Google Scholar 

  38. M. Hamzavi, S.M. Ikhdair, B.J. Falaye, Dirac bound states of anharmonic oscillator in external fields. Ann. Phys. 341, 153–163 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Z. Sharifi, F. Tajic, M. Hamzavi, S.M. Ikhdair, Dirac bound states of the Killingbeck potential under external magnetic fields. Zeitschrift für Naturforschung A 70, 499–505 (2015)

    Article  ADS  Google Scholar 

  40. M. Eshghi, H. Mehraban, S.M. Ikhdair, Relativistic Killingbeck energy states under external magnetic fields. Eur. Phys. J. A 52, 1–8 (2016)

    Article  Google Scholar 

  41. S.M. Ikhdair, B.J. Falaye, Approximate analytical solutions to relativistic and nonrelativistic Pöschl–Teller potential with its thermodynamic properties. Chem. Phys. 421, 84–95 (2013)

    Article  Google Scholar 

  42. W. Yang, J. Sun, F. Yu, Thermodynamic properties of cubic boron nitride based on an analytic mean field approach. Eur. Phys. J. B 71, 211–217 (2009)

    Article  ADS  Google Scholar 

  43. P. Linstorm, NIST chemistry webbook, NIST standard reference database number 69. J. Phys. Chem Ref. Data Monograph 9, 1–1951 (1998)

    Google Scholar 

  44. K.R. Purohit, R.H. Parmar, A.K. Rai, Eigensolution and various properties of the screened cosine Kratzer potential in D dimensions via relativistic and non-relativistic treatment. Eur. Phys. J. Plus 135, 1–38 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A. Ghanbari took care of methodology, formal analysis, project administration, software and writing original draft. N. Karimi Baseri reviewed the manuscript.

Corresponding author

Correspondence to A. Ghanbari.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghanbari, A., Baseri, N.K. Magnetic and Aharonov–Bohm Flux Fields’ Effect on Thermodynamic Properties of Nitrogen. J Low Temp Phys 212, 22–35 (2023). https://doi.org/10.1007/s10909-023-02973-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02973-3

Keywords

Navigation