Skip to main content
Log in

Magnetocaloric Effects and Critical Behavior of Rare Earth Manganese Oxides La0.65Ca0.35Mn1-xNixO3 (x = 0, 0.2)

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This study used the traditional solid-phase reaction method to prepare polycrystalline samples: La0.65Ca0.35Mn1-xNixO3 (x = 0, x = 0.2). The effects of Ni doping on the preformed cluster phases, magnetocaloric effects, and critical behavior were systematically investigated. The results showed that the prepared polycrystalline samples all had cubic chalcogenide structures. The substitution of Ni2+ ions for a certain number of Mn3+ ions reduced the changes in the lattice parameters, unit cell volume, Curie temperature (TC), magnetic entropy, and magnetic entropy change. The changes in these properties originated from the partial substitution of Ni2+ for Mn3+ ions, which changed the Mn3+/Mn4+ ratio and decreased the Mn-O-Mn bond angle, thus weakening the double exchange interaction. Both samples had a preformed cluster phase above the low-temperature magnetic transition temperature. The critical behaviors of both samples fit the tricritical model well. A transition from first- to second-order phase transition existed for both the parent and doped samples, and the maximum magnetic entropy changes of the samples at an applied magnetic field of 7 T were 7.70 and 2.08 J·kg−1·K−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials [J]. J. Magn. Magn. Mater. 308(2), 325–340 (2007)

    Article  ADS  Google Scholar 

  2. P. Zhang, H.G. Piao, Y.D. Zhang, J.H. Huang, Research progress of critical behaviors and magnetocaloric effects of perovskite manganites [J]. Acta Physica Sinica 70(15), 256–271 (2021)

    Article  Google Scholar 

  3. S. Arumugam, P. Sarkar, P. Mandal, A. Murugeswari, K. Matsubayashi, C. Ganguli, Y. Uwatoko, Effect of hydrostatic pressure on magnetic phase transition and magnetocaloric properties of (Sm0.8Nd0.2)0.52Sr0.48MnO3. J. Appl. Phys. 107(11), 113904 (2010)

    Article  ADS  Google Scholar 

  4. S.P. Guo, Y.W. Mao, R.L. Wang, C.P. Yang, Z.C. Xia, High-pressure synthesis, structure and magnetic properties of LaCrO3 ceramics [J]. J. Hubei Eng. Univ. 37(06), 51–55 (2017)

    Google Scholar 

  5. C. Zener, Interaction between the d-Shells in the transition metals. II. ferromagnetic comyountls of manganese with perovskite structure [J]. Phys. Rev. 82(3), 403 (1951)

    Article  ADS  Google Scholar 

  6. H.F. Yang, Q. Wu, N.J. Yu, Y.D. Yu, M.X. Pan, P.Y. Zhang, H.L. Ge, Study of magnetic and magnetocaloric effect of Pr0.5Sr0.5-xNaxMnO3 manganites [J]. J. Solid State Chem. 282, 121072 (2020)

    Article  Google Scholar 

  7. S.K. Çetin, M. Acet, A. Ekicibil, Effect of Pr-substitution on the structural, magnetic and magnetocaloric properties of (La1-xPrx)0.67Pb0.33MnO3 (0.0≤ x≤ 0.3) manganites [J]. J. Alloys Compounds 727, 1253–1262 (2017)

    Article  Google Scholar 

  8. M. Oumezzine, J.S. Amaral, F.J. Mompean, M.G. Hernández, M. Oumezzine, Structural, magnetic, magneto-transport properties and Bean-Rodbell model simulation of disorder effects in Cr3+ substituted nanocrystalline synthesized by modified Pechini method [J]. RSC Adv. 6(38), 32193–32201 (2016)

    Article  ADS  Google Scholar 

  9. K. McBride, J. Cook, S. Gray, S. Felton, L. Stella, D. Poulidi, Evaluation synthesised via a modified sol–gel method as mediators for magnetic fluid hyperthermia [J]. CrystEngComm 18(3), 407–416 (2016)

    Article  Google Scholar 

  10. Liu L L. Study on the Magnetocaloric Effect of A-site and b-site ion-doped perovskite manganese oxides [D]. Guilin University of Technology, 2022. (in Chinese)

  11. T. Chen, Z. Xu, Y.W. Xu, Research on perovskite-type manganese oxides as magnetic refrigerant material[J]. Mater. Guide 17(3), 72–74 (2003)

    Google Scholar 

  12. C. Krishnamoorthi, S.K. Barik, Z. Siu, R. Mahendiran, Normal and inverse magnetocaloric effects in La0.5Ca0.5Mn1−xNixO3 [J]. Solid State Commun. 150(35–36), 1670–1673 (2010)

    Article  ADS  Google Scholar 

  13. B.C. Zhao, W.H. Song, Y.Q. Ma, R.L. Zhang, J. Yang, Z.G. Sheng, W.J. Lu, J.M. Dai, Y.P. Sun, Magnetic and transport properties of Co-doped manganitevc La0.7Sr0.3Mn1–xCoxO3(0≤x≤0.5) [J]. Physica Status Solidi 242(8), 1719–1727 (2005)

    Article  ADS  Google Scholar 

  14. M. El-Hagary, Y.A. Shoker, S. Mohammad, A.M. Moustafa, A.A. Ramadan, Structural and magnetic properties of polycrystalline La0.77Sr0.23Mn1−xCuxO3 (0≤x≤0.5) manganites [J]. J. Alloys Compounds 468(1–2), 47 (2009)

    Article  Google Scholar 

  15. M.D. Mukadam, S.M. Yusuf, Magnetocaloric effect in the La0.67Ca0.33Mn0.9Fe0.1O3 perovskite over a broad temperature range [J]. J. Appl. Phys. 105(6), 945 (2009)

    Article  Google Scholar 

  16. A.M. Ahmed, A.E.-M.A. Mohamed, M.A. Abdellateef, H.A. Abd El-Ghanny, Magnetoresistive properties of Ni-doped La0.7Sr0.3MnO3 manganites [J]. Rare Metals 35(7), 551–558 (2016)

    Article  Google Scholar 

  17. S. Kuharuangrong, Effects of Ni on the electrical conductivity and microstructure of La0.82Sr0.16MnO3 [J]. Ceram Int 30(2), 273–277 (2004)

    Article  Google Scholar 

  18. S. Pal, E. Bose, B.K. Chaudhuri, H.D. Yang, S. Neeleshwar, Y.Y. Chen, Effect of Ni doping in rare-earth manganite La0.7Pb0.3Mn1−xNixO3 (x= 0.0–0.5) [J]. J. Magnetism Magnetic Mater. 293(3), 872–879 (2005)

    Article  ADS  Google Scholar 

  19. M. Eshraghi, H. Salamati, P. Kameli, The effect of NiO doping on the structure, magnetic and magnetotransport properties of La0.8Sr0.2MnO3 composite [J]. J. Alloys Compounds 437(1–2), 22–26 (2007)

    Article  Google Scholar 

  20. L.A. Han, C.L. Chen, Magnetocaloric and colossal magnetoresistance effect in layered Perovskite La1.4Sr1.6Mn2O7 [J]. J. Mater. Sci. Technol. 26(3), 234–236 (2010)

    Article  Google Scholar 

  21. K. Li, F.G. Wang, B.C. Wu, H.L. Du, J.B. Yang, C.S. Wang, Magnetic and magnetocaloric properties of Gd7Pd3-xFex [J]. J. Chin. Soc. Rare Earths 38(1), 6 (2020)

    Google Scholar 

  22. K.H. Wu, J.Y. Xiang, Z.G. Wang, S.L. Wan, J.J. Zhao, Y. Lu, A study on the magnetic and electrical transport properties of the double-layered perovskite manganites Nd1.15Tb0.05Sr1.8Mn2O7 [J]. Chin. Rare Earths 37(01), 128–131 (2016)

    Google Scholar 

  23. Y.K. Zhang, Y. Tian, Z.Q. Zhang, Y.S. Jia, B. Zhang, M.Q. Jiang, J. Wang, Z.M. Ren, Magnetic properties and giant cryogenic magnetocaloric effect in B-site ordered antiferromagnetic Gd2MgTiO6 double perovskite oxide [J]. Acta Mater. 226, 117669 (2022)

    Article  Google Scholar 

  24. P. Zhang, P. Lampen, T.L. Plan, S.C. Yu, T.D. Thanh, N.H. Dan, V.D. Lam, H. Srikanth, M.H. Phan, Influence of magnetic field on critical behavior near a first order transition in optimally doped manganites: the case of La1−xCaxMnO3 (0.2≤x≤0.4) [J]. J. Magnetism Magnetic Mater. 348, 146 (2013)

    Article  ADS  Google Scholar 

  25. D.T. Hanh, M.S. Islam, F.A. Khan, D.L. Minh, N. Chau, Large magnetocaloric effect around room temperature in La0.7Ca0.3−xPbxMnO3 perovskites [J]. J. Magnetism Magnetic Mater. 310(2), 2826–2828 (2007)

    Article  ADS  Google Scholar 

  26. P. Xu, Z.P. Ma, P.F. Wang, H.F. Wang, L.W. Li, Excellent cryogenic magnetocaloric performances in ferromagnetic Sr2GdNbO6 double perovskite compound [J]. Mater. Today Phys. 20, 100470 (2021)

    Article  Google Scholar 

  27. Chen H W. Study on Magnetic and Magnetocaloric Effect of ABO3 Type Oxide Materials [D]. Baotou Teachers College, Inner Mongolia University of Science and Technology, 2020. (in Chinese)

  28. J.P. Palakkal, C. Raj Sankar, M.R. Varma, Multiple magnetic transitions, Griffiths-like phase, and magnetoresistance in La2CrMnO6 [J]. J. Appl. Phys. 122(7), 073907 (2017)

    Article  ADS  Google Scholar 

  29. X. Jin, X.D. Sun, F.Z. Cao, Y. Tian, H.Q. Yun, Y. Lu, J.J. Zhao, Magnetic properties and magnetic entropy change of perovskite manganites La0.875Eu0.025Sr0.1MnO3 [J]. J. Chin. Soc. Rare Earths 36(06), 667–671 (2018)

    Google Scholar 

  30. M.H. Phan, V. Franco, N.S. Bingham, H. Srikanth, N.H. Hur, S.C. Yu, Tricritical point and critical exponents of La0.7Ca0.3−xSrxMnO3 (x = 0, 0.05, 0.1, 0.2, 0.25) single crystals [J]. J. Alloys Compounds 508(2), 238–244 (2010)

    Article  Google Scholar 

  31. Y.K. Zhang, J. Zhu, S. Li, Z.Q. Zhang, J. Wang, Z.M. Ren, Magnetic properties and promising magnetocaloric performances in the antiferromagnetic GdFe2Si2 compound [J]. Sci. China Mater. 65(5), 1345–1352 (2022)

    Article  Google Scholar 

  32. B.K. Banerjee, On a generalised approach to first and second order magnetic transitions [J]. Phys. Lett. 12(1), 16–17 (1964)

    Article  ADS  Google Scholar 

  33. C. Li, J.J. Zhao, R. Xing, H.Q. Yun, X. Jin, Critical field analysis and magnetic properties of perovskite manganese oxide La0.8Ca0.2Mn1-xNixO3 (x= 0.0, 0.1, 0.2) [J]. Chin. J. Phys. 77, 551–571 (2022)

    Article  Google Scholar 

  34. T.D. Thanh, D.C. Linh, T.V. Manh, T.A. Ho, T.-L. Phan, S.C. Yu, Coexistence of short- and long-range ferromagnetic order in La0.7Sr0.3Mn1-xCoxO3 compounds [J]. J. Appl. Phys. 117(17), 17C101 (2015)

    Article  Google Scholar 

  35. H. Chen, C. Li, J.J. Zhao, Y. Lu, F.Z. Cao, W.X. Wang, L. Zheng, X. Jin, Critical field analysis and magnetocaloric effect of a-site double-doped manganese oxide La0.9EuSr0.1MnO3 [J]. J. Superconductivity Novel Magnetism 34(10), 2651–2666 (2021)

    Article  Google Scholar 

  36. X. Jin, C. Li, H.W. Chen, F.Z. Cao, Y. Lu, W.X. Wang, L. Zheng, J.J. Zhao, Magnetic and critical behavior studies of perovskite manganites La0.8-xEuxSr0. 2MnO3 (x= 0 and 0.05) [J]. J. Mater. Sci. Mater. Electron. 32(9), 11439–11452 (2021)

    Article  Google Scholar 

  37. Z.P. Ma, X.S. Dong, Z.Q. Zhang, L.W. Li, Achievement of promising cryogenic magnetocaloric performances in La1-xPrxFe12B6 compounds [J]. J. Mater. Sci. Technol. 92(33), 138–142 (2021)

    Article  Google Scholar 

  38. R. Thiyagarajan, S. Esakki Muthu, R. Mahendiran, S. Arumugam, Effect of hydrostatic pressure on magnetic and magnetocaloric properties of Mn-site doped perovskite manganites Pr0.6Ca0.4Mn0.96B0.04O3 (B= Co and Cr) [J]. J. Appl. Phys. 115(4), 043905 (2014)

    Article  ADS  Google Scholar 

  39. Z.M. Wang, Q.Y. Xu, G. Ni, H. Zhang, Magnetic entropy change in perovskite manganites La0.6Pr0.1Pb0.3MnO3 with double metal-insulator peaks [J]. Phys. B: Condensed Matter 406(23), 4333–4337 (2011)

    Article  ADS  Google Scholar 

  40. V. Franco, A. Conde, V. Provenzano, R.D. Shull, Scaling analysis of the magnetocaloric effect in Gd5Si2Ge1.9X0.1 (X= Al, Cu, Ga, Mn, Fe, Co) [J]. J. Magnetism Magnetic Mater. 322(2), 218–223 (2010)

    Article  ADS  Google Scholar 

  41. F.Z. Cao, H.W. Chen, Z.K. Xie, Y. Lu, J.J. Zhao, X. Jin, Magnetic properties and magnetic entropy changes of perovskite manganese oxide La0.8-xEuxSr0.2MnO3 (x= 0, 0.075) [J]. Chin. J. Phys. 65, 424–435 (2020)

    Article  Google Scholar 

  42. S. Choura-Maatar, M.M. Nofal, R. Mnassri, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Enhancement of the magnetic and magnetocaloric properties by Na substitution for Ca of La0.8Ca0.2MnO3 manganite prepared via the Pechini-type sol–gel process. J. Mater. Sci.: Mater. Electron. 31(2), 1634–1645 (2020)

    Google Scholar 

  43. A. Sakka, R. M’Nassri, M.M. Nofal, S. Mahjoub, W. Cheikhrouhou-Koubaa, N. Chniba-Boudjada, M. Oumezzine, A. Cheikhrouhou, Structure, magnetic and field dependence of magnetocaloric properties of of Pr0.5 RE0.1Sr0.4MnO3 (RE = Eu and Er) [J]. J. Magnetism Magnetic Mater. 514, 167158 (2020)

    Article  Google Scholar 

  44. C. Krishnamoorthi, S.K. Barik, Z. Siu, R. Mahendiran, Normal and inverse magnetocaloric effects in La0.5Ca0.5Mn1-xNixO3 [J]. Solid State Commun. 150(35–36), 1670–1673 (2010)

    Article  ADS  Google Scholar 

  45. A. Gomez, E. Chavarriaga, I. Supelano, C.A. Parra, O. Moran, Evaluation of the magnetocaloric response of nano-sized La0.7Ca0.3Mn1-xNixO3 manganites synthesized by auto-combustion method [J]. AIP Adv. 8(5), 056430 (2018)

    Article  ADS  Google Scholar 

Download references

Funding

This project was supported by the State Key Development Program for Basic Research of China (Grant Nos. 51562032).

Author information

Authors and Affiliations

Authors

Contributions

In order to better reflect the authors' contributions to the paper, the specific contributions of the multiple authors named in the paper are described here as follows: Ru Xing, Xiang Jin, Jianjun Zhao Lin Zheng and Jing Zhao: proposed the research idea and designed the research protocol. Jing Zhao, Zhijun Hao, Ting Xing and Huaijin Ma: responsible for conducting the experiments. Jing Zhao, Huiqin Yun, Cheng Li: responsible for collecting and analysing data. Ru Xing, Xiang Jin, Jianjun Zhao Lin Zheng and Jing Zhao: responsible for drafting the thesis. Ru Xing: responsible for revising the final version.

Corresponding author

Correspondence to Ru Xing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Jin, X., Yun, H. et al. Magnetocaloric Effects and Critical Behavior of Rare Earth Manganese Oxides La0.65Ca0.35Mn1-xNixO3 (x = 0, 0.2). J Low Temp Phys 211, 59–76 (2023). https://doi.org/10.1007/s10909-023-02940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-023-02940-y

Keywords

Navigation