Skip to main content
Log in

Measurement of the Equation of State of Superfluid Helium-4 at Negative Pressure

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report a measurement of the equation of state of superfluid \(^4\)He (\(T\sim 1\) K) at negative pressure. A stimulated Brillouin gain spectrometer, used together with an optical interferometer, allows us to probe simultaneously both the compressibility and the density of acoustically driven metastable states of the liquid. In the pressure range \(0>P>-1\) bar, the measured equation of state is in agreement with available theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To picture the concept of negative pressure one may think at a real fluid in a container. When the fluid particles push against the walls of the container, the pressure of the fluid is positive, when they pull against it, it is negative.

  2. The resolution is defined as the spatial period for which the contrast of a transmission sinusoidal pattern observed through the imaging system is half its maximum.

References

  1. D. Boyanovsky, H.J. de Vega, D.J. Schwarz, Phase transitions in the early and present universe. Annu. Rev. Nucl. Part. Sci. 56(1), 441–500 (2006). https://doi.org/10.1146/annurev.nucl.56.080805.140539

    Article  ADS  Google Scholar 

  2. S. Balibar, Nucleation in quantum liquids. J. Low Temp. Phys. 129(5), 363–421 (2002). https://doi.org/10.1023/A:1021412529571

    Article  ADS  Google Scholar 

  3. J. Grucker, Metastable phases of liquid and solid \(^{4}{\rm He}\). J. Low Temp. Phys. 197(3), 149–166 (2019). https://doi.org/10.1007/s10909-019-02212-8

    Article  ADS  Google Scholar 

  4. J.A. Nissen, E. Bodegom, L.C. Brodie, J.S. Semura, Tensile strength of liquid \(^{4}{\rm He}\). Phys. Rev. B 40(10), 6617–6624 (1989). https://doi.org/10.1103/PhysRevB.40.6617

    Article  ADS  Google Scholar 

  5. Q. Xiong, H.J. Maris, Study of cavitation in superfluid helium-4 at low temperatures. JLTP 82, 105 (1991). https://doi.org/10.1007/BF00681524

    Article  ADS  Google Scholar 

  6. H. Lambaré, P. Roche, S. Balibar, H.J. Maris, O.A. Andreeva, C. Guthmann, K.O. Keshishev, E. Rolley, Cavitation in superfluid helium-4 at low temperature. Eur. Phys. J. B 2(3), 381–391 (1998). https://doi.org/10.1007/s100510050261

    Article  ADS  Google Scholar 

  7. F. Caupin, S. Balibar, Cavitation pressure in liquid helium. Phys. Rev. B 64, 064507 (2001). https://doi.org/10.1103/PhysRevB.64.064507

    Article  ADS  Google Scholar 

  8. A. Qu, A. Trimeche, J. Dupont-Roc, J. Grucker, P. Jacquier, Cavitation density of superfluid helium-4 around 1 K. Phys. Rev. B 91(21), 214115 (2015). https://doi.org/10.1103/PhysRevB.91.214115

    Article  ADS  Google Scholar 

  9. A. Qu, A. Trimeche, P. Jacquier, J. Grucker, Dramatic effect of superfluidity on the collapse of \(^{4}{\rm He}\) vapor bubbles. Phys. Rev. B 93(17), 174521 (2016). https://doi.org/10.1103/PhysRevB.93.174521

    Article  ADS  Google Scholar 

  10. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, A. Arvengas, F. Caupin, Time-resolved multiphase interferometric imaging of a highly focused ultrasound pulse. Appl. Opt. 49, 6127 (2010). https://doi.org/10.1364/AO.49.006127

    Article  ADS  Google Scholar 

  11. F. Souris, J. Grucker, J. Dupont-Roc, P. Jacquier, Observation of metastable hcp solid helium. Europhys. Lett. 95(6), 66001 (2011)

    Article  ADS  Google Scholar 

  12. National Center for Biotechnology Information: Pubchem element summary for atomic number 2, helium (2020)

  13. R.F. Harris-Lowe, K.A. Smee, Thermal expansion of liquid helium II. Phys. Rev. A 2, 158–168 (1970). https://doi.org/10.1103/PhysRevA.2.158

    Article  ADS  Google Scholar 

  14. B.M. Abraham, Y. Eckstein, J.B. Ketterson, M. Kuchnir, P.R. Roach, Velocity of sound, density, and grüneisen constant in liquid \(^{4}{\rm He}\). Phys. Rev. A 1, 250–257 (1970). https://doi.org/10.1103/PhysRevA.1.250

    Article  ADS  Google Scholar 

  15. L. Djadaojee, A. Douillet, J. Grucker, Stimulated Brillouin gain spectroscopy in a confined spatio-temporal domain (30 μm,170 ns). Eur. Phys. J. Appl. Phys. 89(3), 30701 (2020). https://doi.org/10.1051/epjap/2020200012

    Article  ADS  Google Scholar 

  16. L. Djadaojee, A. Douillet, J. Grucker, Stimulated Brillouin gain spectroscopy of superfluid helium-4. J. Low Temp. Phys. 203(1), 234–243 (2021). https://doi.org/10.1007/s10909-021-02584-w

    Article  ADS  Google Scholar 

  17. L. Djadaojee, J. Grucker, Optical measurement of the equation of state of bulk liquid helium-4 around 1 K. Phys. Rev. B 103, 144513 (2021). https://doi.org/10.1103/PhysRevB.103.144513

    Article  ADS  Google Scholar 

  18. L. Brillouin, Diffusion de la lumière et des rayons x par un corps transparent homogène - influence de l’agitation thermique. Ann. Phys. 9(17), 88–122 (1922). https://doi.org/10.1051/anphys/192209170088

    Article  Google Scholar 

  19. L. Djadaojee, J. Grucker, Brillouin spectroscopy of metastable superfluid helium-4. Phys. Rev. Lett. 129, 125301 (2022). https://doi.org/10.1103/PhysRevLett.129.125301

    Article  ADS  Google Scholar 

  20. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, J. Treiner, Structural and dynamical properties of superfluid helium: a density-functional approach. Phys. Rev. B 52, 1193–1209 (1995). https://doi.org/10.1103/PhysRevB.52.1193

    Article  ADS  Google Scholar 

  21. J. Boronat, J. Casulleras, J. Navarro, Monte Carlo calculations for liquid \(^{4}{\rm He}\) at negative pressure. Phys. Rev. B 50, 3427–3430 (1994). https://doi.org/10.1103/PhysRevB.50.3427

    Article  ADS  Google Scholar 

  22. G.H. Bauer, D.M. Ceperley, N. Goldenfeld, Path-integral monte Carlo simulation of helium at negative pressures. Phys. Rev. B 61, 9055–9060 (2000). https://doi.org/10.1103/PhysRevB.61.9055

    Article  ADS  Google Scholar 

  23. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press Inc, Orlando, FL, USA, 2008)

    Google Scholar 

  24. P. Berberich, P. Leiderer, S. Hunklinger, Investigation of the lifetime of longitudinal phonons at GHZ frequencies in liquid and solid \(^{4}{\rm He}\). J. Low Temp. Phys. 22(1), 61–84 (1976). https://doi.org/10.1007/BF00655215

    Article  ADS  Google Scholar 

  25. R.J. Donnelly, C.F. Barenghi, The observed properties of liquid helium at saturated vapor pressure. J. Phys. Chem. Ref. Data 27, 1217 (1998). https://doi.org/10.1063/1.556028

    Article  ADS  Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Statistical Physics, Part 1. Course of Theoretical Physics, vol. 5 (Butterworth-Heinemann, Oxford, 1980)

    Google Scholar 

  27. H.J. Maris, D.O. Edwards, Thermodynamic properties of superfluid \(^{4}{\rm He}\) at negative pressure. J. Low Temp. Phys. 129, 1 (2002). https://doi.org/10.1023/A:1020060700534

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Perrin and O. Andrieu for cryogenics support and T. Tardieu, S. Dubois, C. Rio and A. Gohlke for logistic support. This work has been funded by the french Ministère de l’Enseignement Supérieur et de la Recherche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Grucker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Djadaojee, L., Parisi, C., Noûs, C. et al. Measurement of the Equation of State of Superfluid Helium-4 at Negative Pressure. J Low Temp Phys 210, 427–440 (2023). https://doi.org/10.1007/s10909-022-02936-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02936-0

Keywords

Navigation