Skip to main content
Log in

Study of the Blume–Emery–Griffiths Model for Mixed Carbon-Like Nanotube: Monte Carlo Study

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Monte Carlo study under the Metropolis algorithm is performed to investigate the ground state phase diagrams and hysteresis electric cycles by using the Blume–Emery–Griffiths (BEG) model with the mixed spins (S-1, σ-3/2). Firstly, the ground state phase diagram has been established to show the more stable configurations corresponding to the physical parameter EZ/JC. Moreover, the hysteresis electric cycle behaviors have been investigated by varying temperature, exchange coupling interactions, crystal field and biquadratic parameters of the carbon-like nanotube. It is found that the increase in the crystal field and the biquadratic exchange parameters decrease the surface of the loops leading to the apparition of the polarization plateaus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Masrour, L. Bahmad, M. Hamedoun, A. Benyoussef, E.K. Hlil, Phys. Lett. A 378, 276 (2014)

    Article  ADS  Google Scholar 

  2. N.E. Kazantseva, Y.I. Bespyatykh, I. Sapurina, J. Stejskal, J. Vilcakova, P. Saha, J. Magn. Magn. Mater. 301, 155 (2006)

    Article  ADS  Google Scholar 

  3. N.E. Kazantseva, J. Vilcakova, V. Kresalek, P. Saha, I. Sapurina, J. Stejskal, J. Magn. Magn. Mater. 269, 30 (2004)

    Article  ADS  Google Scholar 

  4. R. Moučka, J. Vilčáková, N.E. Kazantseva, A.V. Lopatin, P. Sáha, J. Appl. Phys. 104, 103718 (2008)

    Article  ADS  Google Scholar 

  5. Ö. Yavuz, M.K. Ram, M. Aldissi, P. Poddar, S. Hariharan, J. Mater. Chem. 15, 810 (2005)

    Article  Google Scholar 

  6. R.F. Gibson, Compos. Struct. 92, 2793–2810 (2010)

    Article  Google Scholar 

  7. N. Maaouni, Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benoumar, Solid State Commun. 321, 114047 (2020)

    Article  Google Scholar 

  8. C. Goze-Bac, S. Latil, P. Lauginie, V. Jourdain, J. Conard, L. Duclaux, A. Rubio, P. Bernier, Carbon 40, 1825–1842 (2002)

    Article  Google Scholar 

  9. J.H. Lehman, M. Terrones, E. Mansfield, K.E. Hurst, V. Meunier, Carbon 49, 2581–2602 (2011)

    Article  Google Scholar 

  10. Q. Wang, V.K. Varadan, Int. J. Solids Struct. 43, 254–265 (2006)

    Article  Google Scholar 

  11. M.I. Mohammad, A.A. Moosa, J.H. Potgieter, M.K. Ismael, Hindawi ISRN Nanomater. 2013, 1–7 (2013)

    Google Scholar 

  12. J. Chrzanowska, J. Hoffman, A. Małolepszy, M. Mazurkiewicz, T.A. Kowalewski, Z. Szymanski, L. Stobinski, Basic Solid State Phys. 252, 1860–1867 (2015)

    Article  Google Scholar 

  13. H. Dai, A.G. Rinzler, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 260, 471–475 (1996)

    Article  ADS  Google Scholar 

  14. N. Inami, M.A. Mohamed, E. Shikoh, A. Fujiwara, Sci. Technol. Adv. Mater. 8, 292–295 (2007)

    Article  Google Scholar 

  15. S. Naha, I.K. Puri, J. Phys. D Appl. Phys. 41, 065304 (2008)

    Article  ADS  Google Scholar 

  16. M. Blume, J.V. Emery, R.B. Griffiths, Phys. Rev. A 4, 1071 (1971)

    Article  ADS  Google Scholar 

  17. C.K. Hu, Chin. J. Phy. 52, 1 (2014)

    Google Scholar 

  18. A. Kortsev, M. Augustin, R. F. L. Evans, K. S. Novoselov and E. J. G. Santos, npj comput Mater 6 (2020) 150.

  19. P.B. Ergueta, A.H. Nevidomskyy, Phys. Rev. B 92, 165102 (2015)

    Article  ADS  Google Scholar 

  20. D.P. Snowman, J. Magn. Magn. Mater. 314, 69–74 (2007)

    Article  ADS  Google Scholar 

  21. M. Ertas, O. Canko, M. Keskin, J. Magn. Magn. Mater. 320, 1765–1774 (2008)

    Article  ADS  Google Scholar 

  22. M. Yezli, S. Belhechi, F. Hontinfinde, H. Ez-Zahraouy, Phys. A Stat. Mech. Appl. 448, 81–90 (2016)

    Article  Google Scholar 

  23. J. Kple, F. Hontinfinde, E. Al bayrak, J. Magn. Magn. Mater. 537, 1682 (2021)

    Article  Google Scholar 

  24. A. Jabar, A. Belhaj, H.L. Labrim, L. Bahmad, N. Hassanain, A. Benyoussef, Superlattices Microstruct. 78, 171–182 (2015)

    Article  Google Scholar 

  25. M. Bourass, A. Zradba, A. Al-Rajhi, N. Hachem, R. Aharrouch, M. Madan, M. El Bouziani, Acta Phys. Pol., A 141, 47–53 (2022)

    Article  ADS  Google Scholar 

  26. T. Balcerzak, J. Magn. Magn. Mater. 549, 168968 (2022)

    Article  Google Scholar 

  27. M. Keskin, O. Canko, M. Kirak, BASIC solid-State Phys. 244, 3775 (2007)

    Article  Google Scholar 

  28. E. Obradó, C. Frontera, L. Mañosa, A. Planes, Phys. Rev. B 58, 14245 (1998)

    Article  ADS  Google Scholar 

  29. E. Costabile, J.R. Viana, J.R. de Sousa, J.A. Plascak, Phys. A 393, 297 (2014)

    Article  Google Scholar 

  30. C. Ekiz, Commun. Theor. Phys. 67, 192 (2017)

    Article  ADS  Google Scholar 

  31. S.S. Ahmed, L. Bahmad, A. El yousfi, A. Benyoussef, A. El Kenz, A.G. El Hachimi, Superlatt. Microstruct. 123, 1–11 (2018)

    Article  ADS  Google Scholar 

  32. A. Benyoussef, A. El Kenz, M. El yadari, Condens Matter 8, 72 (2007)

    Google Scholar 

  33. C.C. Loois, G.T. Barkema, C.M. Smith, Phys. Rev. B 78, 184519 (2008)

    Article  ADS  Google Scholar 

  34. W. Selke, C. Ekiz, J. Phys. Condens Matter. 23, 496002 (2011)

    Article  Google Scholar 

  35. Ü. Temize, E. Kantar, M. Keskin, O. Canko, J. Magn. Magn. Mater. 320, 1787–1801 (2008)

    Article  ADS  Google Scholar 

  36. M. Qajjour, N. Maaouni, Z. Fadil, A. Mhirech, B. Kabouchi, W.O. Benomar, L. Bahmad, Chin. J. Phys. 63, 36 (2020)

    Article  Google Scholar 

  37. Z. Fadil, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, Phys. B Condens. Matter 564, 104 (2019)

    Article  ADS  Google Scholar 

  38. M. Qajjour, N. Maaouni, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, J. Magn. Magn. Mater. 482, 312 (2019)

    Article  ADS  Google Scholar 

  39. N. Maaouni, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, J. Magn. Magn. Mater. 468, 175 (2018)

    Article  ADS  Google Scholar 

  40. N. Maaouni, M. Qajjour, Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, Phys. B Condens. Matter 566, 63–70 (2019)

    Article  ADS  Google Scholar 

  41. Z. Fadil, N. Maaouni, M. Qajjour, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, Phys. B Condens. Matter 578, 411852 (2020)

    Article  Google Scholar 

  42. J. Sadanobu, W.A. Goddard III., Fluid Phase Equilib. 144, 415 (1998)

    Article  Google Scholar 

  43. K. Binder, Rep. Prog. Phys. 60, 487 (1997)

    Article  ADS  Google Scholar 

  44. Y. Benhouria, I. Essaoudi, A. Ainane, R. Ahuja, F. Dujardin, Phys. A Stat. Mech. Appl. 506, 499 (2018)

    Article  Google Scholar 

  45. Z. Fadil, A. Mhirech, B. Kabouchi, L. Bahmad, W.O. Benomar, Superlatt. Microstruct. 135, 106285 (2019)

    Article  Google Scholar 

  46. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ZF: Data and results. NSHE: wrote the main manuscript text. AM, BK, LB: Proofreading, interpretation and supervision.

Corresponding author

Correspondence to Z. Fadil.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fadil, Z., Saber, N., Eraki, H. et al. Study of the Blume–Emery–Griffiths Model for Mixed Carbon-Like Nanotube: Monte Carlo Study. J Low Temp Phys 210, 285–296 (2023). https://doi.org/10.1007/s10909-022-02926-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02926-2

Keywords

Navigation