Skip to main content
Log in

Investigation of the Mo and MoNx Thin Films for Superconducting Electronics Application

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

With the increase in integration and the layers of superconducting electronics circuits, molybdenum (Mo)-based films become attractive resistive and inductive functional components because of the large kinetic inductance with the deep magnetic field penetration depth. A DC magnetron sputtering technology is used to fabricate Mo and MoNx films. The effects of different deposition conditions on the electrical properties, topography and crystal structure of the films are investigated. For the Mo films, the resistivity and the surface roughness decrease to 193 nΩ m and 0.72 nm, respectively, as the sputtering power increases and the sputtering pressure is reduced. The dominant (110) peaks of the X-ray diffraction pattern show a blueshift, and the full width at half maximum decreases with the rising sputtering powers. For the MoNx films, the superconducting transition temperature firstly rises and then lowers as the ratio of N2/Ar ratio increases. The physical properties of the Mo and MoNx films change with the sputtering process, and suitable deposition conditions can be selected for the different application structures in the superconducting electronics circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L.A. Abelson, G.L. Kerber, Proc. IEEE 92(10), 1517–1533 (2004)

    Article  Google Scholar 

  2. S.K. Tolpygo et al., IEEE Trans. Appl. Supercond. 28(4), 1100212 (2018)

    Article  Google Scholar 

  3. D.E. Oates et al., Phys Rev B Condens Matter. 43(10), 7655–7663 (1991)

    Article  ADS  Google Scholar 

  4. A. Kamlapure et al., Appl. Phys. Lett. 96(7), 072509 (2010)

    Article  ADS  Google Scholar 

  5. A. Debelle et al., Appl. Phys. Lett. 84(24), 5034–5036 (2004)

    Article  ADS  Google Scholar 

  6. T.J. Vink et al., J. Appl. Phys. 70(8), 4301–4308 (1991)

    Article  ADS  Google Scholar 

  7. S.G. Malhotra et al., J. Appl. Phys. 79(9), 6872–6879 (1996)

    Article  ADS  Google Scholar 

  8. D.W. Hoffman, C.M. Kukla, J. Vac. Sci. Technol. A: Vac. Surf., Films 3(6), 2600–2604 (1985)

    Article  ADS  Google Scholar 

  9. L. Fabrega et al., IEEE Trans. Appl. Supercond. 19(6), 3779–3785 (2009)

    Article  ADS  Google Scholar 

  10. Y.G. Shen, Mater. Sci. Eng., A 359(1–2), 158–167 (2003)

    Article  Google Scholar 

  11. V.K. Semenov, Y.A. Polyakov, S.K. Tolpygo, IEEE Trans. Appl. Supercond. 29(5), 1302809 (2019)

    Google Scholar 

  12. S. Nagasawa et al., Physica C 412–414, 1429–1436 (2004)

    Article  ADS  Google Scholar 

  13. S.K. Tolpygo et al., IEEE Trans. Appl. Supercond. 27(4), 1100815 (2017)

    Article  Google Scholar 

  14. Jenkins, M.W., et al., in Proc. Conf. Proc. 44th Int. Symp. Testing Failure Anal. 148–152(2018).

  15. D. Olaya et al., IEEE Trans. Appl. Supercond. 29(6), 1101708 (2019)

    Article  Google Scholar 

  16. J.M. Murduck et al., IEEE Transactions on Applied Superconductivity. 13(2), 87–90 (2003)

    Article  ADS  Google Scholar 

  17. S.K. Tolpygo et al., Supercond. Sci. Technol. 20(11), S341–S349 (2007)

    Article  Google Scholar 

  18. Y. Wang et al., Supercond. Sci. Technol. 35(2), 025008 (2021)

    Article  ADS  Google Scholar 

  19. R.E. Miller et al., Appl. Phys. Lett. 63(10), 1423–1425 (1993)

    Article  ADS  Google Scholar 

  20. S. Nagasawa et al., IEICE Trans Electr. E97.C(3), 132–140 (2014)

    Article  ADS  Google Scholar 

  21. S.K. Tolpygo et al., IEEE Trans. Appl. Supercond. 17(2), 946–951 (2007)

    Article  ADS  Google Scholar 

  22. S.K. Tolpygo et al., IEEE Trans. Appl. Supercond. 26(3), 1100110 (2016)

    Google Scholar 

  23. S.K. Tolpygo, Low Temp Phys. 42(5), 361–379 (2016)

    Article  ADS  Google Scholar 

  24. S.K. Tolpygo et al., IEEE Trans. Appl. Supercond. 29(5), 1102513 (2019)

    Google Scholar 

  25. Tolpygo, S.K., et al. Proc. Appl. Supercond. Conf. 1–29(2020).

  26. S. Nagasawa et al., Supercond. Sci. Technol. 16(12), 1483 (2003)

    Article  ADS  Google Scholar 

  27. H. Numata et al., IEEE Trans. Appl. Supercond. 9(2), 3198–3201 (1999)

    Article  ADS  Google Scholar 

  28. D. Yohannes et al., IEEE Trans. Appl. Supercond. 15(2), 90–93 (2005)

    Article  ADS  Google Scholar 

  29. W. Xiong et al., IEEE Trans. Appl. Supercond. 27(4), 1100304 (2017)

    Article  Google Scholar 

  30. W. Xiong et al., IEEE Trans. Appl. Supercond. 28(4), 1300605 (2018)

    Article  Google Scholar 

  31. L. Ying et al., IEEE Trans. Appl. Supercond. 31(5), 1301504 (2021)

    Article  Google Scholar 

  32. T. Liang et al., IEEE Trans. Appl. Supercond. 30(7), 7500304 (2020)

    Article  Google Scholar 

  33. V. Yefremenko et al., J. Low Temp. Phys. 199(1–2), 306–311 (2019)

    ADS  Google Scholar 

  34. N. Haberkorn et al., Mater. Lett. 215, 15–18 (2018)

    Article  Google Scholar 

  35. P. Chelvanathan et al., Appl. Surf. Sci. 334, 129–137 (2015)

    Article  ADS  Google Scholar 

  36. P. Chelvanathan et al., Thin Solid Films 638, 213–219 (2017)

    Article  ADS  Google Scholar 

  37. F. Ichikawa et al., J. Phys: Conf. Ser. 969, 012064 (2018)

    Google Scholar 

Download references

Acknowledgements

We acknowledge Huifang Gao for the help on XRD data analysis and acknowledge Kai Fu, Yong Shi, Zhiqiang Zhou and Zezhang Wang for the low temperature measurements.

Funding

This research was funded by Young Scientists Fund of the National Natural Science Foundation of China (61901432) and the Fundamental Research Projects in Basic Scientific Research at NIM (AKYZZ2125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueshen Wang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Huang, M., Wang, Z. et al. Investigation of the Mo and MoNx Thin Films for Superconducting Electronics Application. J Low Temp Phys 210, 182–193 (2023). https://doi.org/10.1007/s10909-022-02915-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02915-5

Keywords

Navigation