Skip to main content

Advertisement

Log in

Development of Self-aligned Ti Optical Transition-Edge Sensors at 1550 nm

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report on self-aligned Ti TES single-photon detectors embedded in a 1550 nm optical cavity. The circular TES chip is shaped with a dry-etch process from the backside to protect the TES and wiring from possible damage and aligned to a single-mode fiber using a standard fiber ferrule and a matching sleeve. The critical temperature of Ti film is about 300 mK, resulting in a relatively short time constant of 1.3 μs. By choosing an active area of 15 × 15 μm2, our optical Ti TES can distinguish single photons at 1550 nm and reaches a system photon detection efficiency of 55% and an energy resolution of about 0.7 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, T. Zama, Opt. Express 19, 870 (2011). https://doi.org/10.1364/OE.19.000870

    Article  ADS  Google Scholar 

  2. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, S. Inoue, T. Zama, Proc. SPIE 7236, 7236C (2009). https://doi.org/10.1117/12.808851

    Article  ADS  Google Scholar 

  3. L. Lolli, E. Taralli, C. Portesi, E. Monticone, M. Rajteri, Appl. Phys. Lett. 103, 041107 (2013). https://doi.org/10.1063/1.4815922

    Article  ADS  Google Scholar 

  4. A.J. Miller, A.E. Lita, B. Calkins, I. Vayshenker, S.M. Gruber, S.W. Nam, Opt. Express 19(10), 9102–9110 (2011). https://doi.org/10.1364/OE.19.009102

    Article  ADS  Google Scholar 

  5. A.E. Lita, A.J. Miller, S. Nam, Opt. Express 16, 3032–3040 (2008). https://doi.org/10.1364/OE.16.003032

    Article  ADS  Google Scholar 

  6. D. Fukuda, G. Fujii, T. Numata, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishhii, T. Itatana, S. Inoue, Zamma, Metrologia 46(4), S288–S292 (2009)

    Article  ADS  Google Scholar 

  7. R. Kobayashi, K. Hattori, S. Inoue, D. Fukuda, IEEE Trans. Appl. Supercond. 29, 1 (2019). https://doi.org/10.1109/TASC.2019.2909978

    Article  Google Scholar 

  8. A.J. Miller, S.W. Nam, J.M. Martinis, A.V. Sergienko, Appl. Phys. Lett. 83, 791 (2003). https://doi.org/10.1063/1.1596723

    Article  ADS  Google Scholar 

  9. D. Fukuda, G. Fujii, A. Yoshizawa, H. Tsuchida, R.M.T. Damayanthi, H. Takahashi, S. Inoue, M. Ohkubo, J. Low Temp. Phys. 151, 100–105 (2008)

    Article  ADS  Google Scholar 

  10. Y. Geng, J. Q. Zhong, P. Z. Li, W. Zhang, Z. Wang, K. M. Zhou, Y. Ren, W. Miao, Q. J. Yao, S. C. Shi, J. Infrared Millim. Waves, (in press, in Chinese)

  11. W. Zhang, Y. Geng, Z. Wang, J.Q. Zhong, P.Z. Li, W. Miao, Y. Ren, Q.J. Yao, J.F. Wang, S.C. Shi, IEEE Trans. Appl. Supercond. 29, 2100505 (2019). https://doi.org/10.1109/TASC.2019.2906276

    Article  Google Scholar 

  12. Y. Geng, W. Zhang, P.Z. Li, J.Q. Zhong, Z. Wang, W. Miao, Y. Ren, J.F. Wang, Q.J. Yao, S.C. Shi, J. Low Temp. Phys. (2020). https://doi.org/10.1007/s10909-020-02383-9

    Article  Google Scholar 

  13. W. Zhang, Z. Wang, J.Q. Zhong, P.Z. Li, Y. Geng, W. Miao, Y. Ren, K.M. Zhou, Q.J. Yao, S.C. Shi, IEEE Trans. Appl. Supercond. 31, 1 (2021). https://doi.org/10.1109/TASC.2021.3065632

    Article  Google Scholar 

  14. D. Fukuda, R.M.T. Damayanthi, A. Yoshizawa, N. Zen, H. Takahashi, K. Amemiya, M. Ohkubo, IEEE Trans. Appl. Supercond. 17, 259 (2007). https://doi.org/10.1109/TASC.2007.897393

    Article  ADS  Google Scholar 

  15. E. Taralli, C. Portesi, L. Lolli, E. Monticone, M. Rajteri, I. Novikov, J. Beyer, Supercond. Sci. Technol. 23, 105012 (2010). https://doi.org/10.1088/0953-2048/23/10/105012

    Article  ADS  Google Scholar 

  16. L. Lolli, G. Brida, I.P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. Ruo Berchera, E. Taralli, P. Traina, Int. J. Quant. Inform. 9, 405–413 (2011). https://doi.org/10.1142/S0219749911007022

    Article  Google Scholar 

  17. S.S. Gruber, Optimizing detection efficiency for transition edge sensors (University of Colorado at Boulder, 2007)

    Google Scholar 

Download references

Acknowledgements

This work is supported partly by the National Key R&D Program of China under Grant 2017YFA0304003, NSFC under Grants U1831202, U1731119, U1931123, 11773083, and 11873099, CAS under Grants QYZDJ-SSW-SLH043 and GJJSTD20180003, Jiangsu Province under Grant BRA2020411.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P.Z., Geng, Y., Zhang, W. et al. Development of Self-aligned Ti Optical Transition-Edge Sensors at 1550 nm. J Low Temp Phys 209, 248–255 (2022). https://doi.org/10.1007/s10909-022-02887-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02887-6

Keywords

Navigation