Skip to main content

Advertisement

Log in

AC Conductivity and Dielectric Behavior of a New Double Perovskite PrNaMnMoO6 System

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

This work presents some electrical properties based on impedance measurements as well as the dielectric constants and electric modulus. In order to study the electrical conductivity and dielectric properties of PrNaMnMoO6, complex impedance spectroscopy techniques were carried out in the frequency range 200 Hz–5 MHz at various temperatures (409–457 K). The complex impedance diagram at different temperatures showed a single semicircle, implying that the response originated from a single capacitive element corresponding to the grains. AC and dc conductivities were studied to explore the mechanisms of conduction. It can be seen from the experimental data that the AC conductivity of this compound is proportional to ωs(s < 1), and the value of s is to be temperature-dependent, which has a tendency to decrease in temperature. Activation energy values deduced from both dc conductivity and hopping frequency are in the order of Ea = 0.32 eV and Ea = 0.29 eV, respectively. The two values Ea = 0.32 eV and Ea = 0.29 eV of activation energies obtained from the hopping frequency and equivalent circuit confirms that the transport is through an ion hopping mechanism dominated by the motion of the Na+ ion in the structure of the investigated material. In general, the size of the A ion influences the crystal symmetry significantly, while that of the B ion does not change the symmetry, but changes the lattice volume proportionally. The influence of the nature of the divalent A-site cations on the dielectric properties was evaluated by resistivity measurements in the frequency range. It is found that relative permittivity and dielectric loss regularly change with A cation size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. O. Messaoudi, A. Mabrouki, M. Moufida, L. Alfhaid, A. Azhary, S. Elgharbi, J Mater Sci: Mater Electron 32, 22481 (2021)

    Google Scholar 

  2. A. Mabrouki, O. Messaoudi, M. Mansouri, S. Elgharbi, A. Bardaoui, RSC Adv. 11, 37896 (2021)

    Article  ADS  Google Scholar 

  3. A. Mabrouki, H. Chadha, O. Messaoudi, A. Benali, T. Mnasri, E. Dhahri, M.A. Valente, S. Elgharbi, A. Dhahri, L. Manai, Inorg. Chem. Commun. 139, 109310 (2022)

    Article  Google Scholar 

  4. X. Chen, J. Xu, Y. Xu, F. Luo, Y. Du, Inorg. Chem. Front. 6, 2226 (2019)

    Article  Google Scholar 

  5. S.A. Khandy, D.C. Gupta, J. Phys. Chem. Solids 135, 109079 (2019)

    Article  Google Scholar 

  6. J. Bijelić, D. Tatar, S. Hajra, M. Sahu, S.J. Kim, Z. Jagličić, I. Djerdj, Molecules 25, 3996 (2020)

    Article  Google Scholar 

  7. F. Zhao, Z. Yue, Z. Gui, L. Li, Jpn. J. Appl. Phys. 44, 8066 (2005)

    Article  ADS  Google Scholar 

  8. T. Sugahara, M. Ohtaki, T. Souma, J. Ceram. Soc. Jpn. 116, 1278 (2008)

    Article  Google Scholar 

  9. J.H. Kim, K.W. Jeong, D.G. Oh, H.J. Shin, J.M. Hong, J.S. Kim, J.Y. Moon, N. Lee, Y.J. Choi, Sci Rep 11, 23786 (2021)

    Article  ADS  Google Scholar 

  10. J. Su, Z.Z. Yang, X.M. Lu, J.T. Zhang, L. Gu, C.J. Lu, Q.C. Li, J.-M. Liu, J.S. Zhu, A.C.S. Appl, Mater. Interfaces 7, 13260 (2015)

    Article  Google Scholar 

  11. A. Hossain, A.K.M. AtiqueUllah, P. SarathiGuin, S. Roy, J Sol Gel Sci Technol 93, 479 (2020)

    Article  Google Scholar 

  12. P.M. Woodward, J. Goldberger, M.W. Stoltzfus, H.W. Eng, R.A. Ricciardo, P.N. Santhosh, P. Karen, A.R. Moodenbaugh, J. Am. Ceram. Soc. 91, 1796 (2008)

    Article  Google Scholar 

  13. H. Wei, Y. Chen, G. Huo, H. Zhang, J. Ma, Physica B 405, 1369 (2010)

    Article  ADS  Google Scholar 

  14. N. Narayanan, D. Mikhailova, A. Senyshyn, D.M. Trots, R. Laskowski, P. Blaha, K. Schwarz, H. Fuess, H. Ehrenberg, Phys. Rev. B 82, 024403 (2010)

    Article  ADS  Google Scholar 

  15. A. Poddar, S. Das, B. Chattopadhyay, J. Appl. Phys. 95, 6261 (2004)

    Article  ADS  Google Scholar 

  16. G. Popov, M. Greenblatt, M. Croft, Phys. Rev. B 67, 024406 (2003)

    Article  ADS  Google Scholar 

  17. S. Sugahara, M. Tanaka, Appl. Phys. Lett. 84, 2307 (2004)

    Article  ADS  Google Scholar 

  18. M. Itoh, I. Ohta, Y. Inaguma, Mater. Sci. Eng., B 41, 55 (1996)

    Article  Google Scholar 

  19. Y. Moritomo, Sh. Xu, A. Machida, T. Akimoto, E. Nishibori, M. Takata, M. Sakata, Phys. Rev. B 61, R7827 (2000)

    Article  ADS  Google Scholar 

  20. J.H. Jung, S.-J. Oh, M.W. Kim, T.W. Noh, J.-Y. Kim, J.-H. Park, H.-J. Lin, C.T. Chen, Y. Moritomo, Phys. Rev. B 66, 104415 (2002)

    Article  ADS  Google Scholar 

  21. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  Google Scholar 

  22. A. Žužić, J. Macan, Open Ceramics 5, 100063 (2021)

    Article  Google Scholar 

  23. K. Momma, F. Izumi, J Appl Cryst 44, 1272 (2011)

    Article  Google Scholar 

  24. S. Mizusaki, J. Sato, T. Taniguchi, Y. Nagata, S.H. Lai, M.D. Lan, T.C. Ozawa, Y. Noro, H. Samata, J. Phys.: Condens. Matter 20, 235242 (2008)

    ADS  Google Scholar 

  25. H.-B. Park, C.Y. Park, Y.-S. Hong, K. Kim, S.-J. Kim, J. Am. Ceram. Soc. 82, 94 (1999)

    Article  Google Scholar 

  26. A.E. Lavat, M.C. Grasselli, E.J. Baran, R.C. Mercader, Mater. Lett. 47, 194 (2001)

    Article  Google Scholar 

  27. W. Zheng, W. Pang, G. Meng, Mater. Lett. 37, 276 (1998)

    Article  Google Scholar 

  28. In Impedance Spectroscopy (John Wiley & Sons, Ltd, 2005), pp. i–xvii.

  29. R.S.T.M. Sohn, A.A.M. Macêdo, M.M. Costa, S.E. Mazzetto, A.S.B. Sombra, Phys. Scr. 82, 055702 (2010)

    Article  ADS  Google Scholar 

  30. A. Zaafouri, M. Megdiche, M. Gargouri, J. Alloy. Compd. 584, 152 (2014)

    Article  Google Scholar 

  31. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, J Alloy Compd 453, 325 (2008)

    Article  Google Scholar 

  32. S. Nasri, M. Megdiche, K. Guidara, M. Gargouri, Ionics 19, 1921 (2013)

    Article  Google Scholar 

  33. K. Sambasiva-Rao, D. Madhava Prasad, P. Murali Krishna, B. Tilak, KCh. Varadarajulu, Mater. Sci. Eng., B 133, 141 (2006)

    Article  Google Scholar 

  34. A.K. Jonscher, Nature 267, 673 (1977)

    Article  ADS  Google Scholar 

  35. I.G. Austin, N.F. Mott, Adv. Phys. 50, 757 (2001)

    Article  ADS  Google Scholar 

  36. S.R. Elliott, Phil. Mag. 36, 1291 (1977)

    Article  ADS  Google Scholar 

  37. S.R. Elliott, Phil Mag B 37, 553 (1978)

    Article  ADS  Google Scholar 

  38. S.R. Elliott, Adv. Phys. 36, 135 (1987)

    Article  ADS  Google Scholar 

  39. N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials Clarendon Press (Oxford University Press, Oxford New York, 1979)

    Google Scholar 

  40. R. Bergman, J. Appl. Phys. 88, 1356 (2000)

    Article  ADS  Google Scholar 

  41. C. Karlsson, A. Mandanici, A. Matic, J. Swenson, L. Börjesson, J. Non-Cryst. Solids 307–310, 1012 (2002)

    Article  ADS  Google Scholar 

  42. H. Nefzi, F. Sediri, H. Hamzaoui, N. Gharbi, J. Solid State Chem. 190, 150 (2012)

    Article  ADS  Google Scholar 

  43. V. Chithambaram, S. Jerome Das, R. ArivudaiNambi, K. Srinivasan, S. Krishnan, Physica B 405, 2605 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research has been funded by the Research Deanship of the University of Ha’il-Saudi Arabia through project number RG-21 107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zaafouri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaafouri, A., Megdiche, M., Borchani, S.M. et al. AC Conductivity and Dielectric Behavior of a New Double Perovskite PrNaMnMoO6 System. J Low Temp Phys 210, 464–483 (2023). https://doi.org/10.1007/s10909-022-02884-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02884-9

Keywords

Navigation