Skip to main content
Log in

Spin-Polarized Transport in InAs/GaAs Double-Barrier Heterostructure with Electric and Magnetic Fields

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Spin-dependent electron tunneling in InAs/GaAs double-barrier heterostructures was theoretically studied using the matrix method. The effects of Dresselhaus spin–orbit interaction, in-plane wave vector, magnetic field, the magnitude of an electric field, and negative field on its spin-transport were discussed. The Dresselhaus spin–orbit interaction enhances the spin polarization and energy between spin resonances. The in-plane wave vector shifts the resonance of polarization, and the increasing in-plane wave vector shifts the resonance to a higher value on the energy scale. The increasing magnetic field enhances the Zeeman splitting and causes enhanced polarization. The spin splitting was achieved due to the tunable magnitude of the electric field, and the negative electric field highly influences the spin transport properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Caliskan, M. Kumru, J. Phys. Condens. Matter 19, 076205 (2007)

    Article  ADS  Google Scholar 

  2. J.P. Eisenstein, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 118, 186801 (2017)

    Article  ADS  Google Scholar 

  3. M. Holub, P. Bhattacharya, J. Phys. D Appl. Phys. 40, R179 (2007)

    Article  ADS  Google Scholar 

  4. I. Zutic, J. Fabian, S.D. Sarma, Phys. Rev. B 64, 121201 (2001)

    Article  ADS  Google Scholar 

  5. L.B. Chandrasekar, K. Gnanasekar, M. Karunakaran, Superlattices Microstruct. 136, 106322 (2019)

    Article  Google Scholar 

  6. E.A. Andrada, G.C. LaRocca, F. Bassani, Phys. Rev. B 50, 8523 (1994)

    Article  ADS  Google Scholar 

  7. E.A. Andrada, G.C. LaRocca, F. Bassani, Phys. Rev. N 55, 16293 (1997)

    Article  ADS  Google Scholar 

  8. J. Gang, X.X. Liang, S.L. Ban, J. Appl. Phys. 102, 073718 (2007)

    Article  ADS  Google Scholar 

  9. K. Gnanasekar, K. Navaneethakrishnan, Physica E 28, 328 (2005)

    Article  ADS  Google Scholar 

  10. J.D.S. Teixeira, H.O. Frota, A.C.R. Bittencourt, Phys. Scr. 89, 085804 (2014)

    Article  ADS  Google Scholar 

  11. K. Gnanasekar, K. Navaneethakrishnan, Phys. Lett. A 341, 495 (2005)

    Article  ADS  Google Scholar 

  12. L.B. Chandrasekar, K. Gnanasekar, M. Karunakaran, R. Chandramohan, Curr. Appl. Phys. 15, 1421 (2015)

    Article  ADS  Google Scholar 

  13. L.B. Chandrasekar, M. Karunakaran, K. Gnanasekar, J. Semicond. 39, 112001 (2018)

    Article  ADS  Google Scholar 

  14. M. Eric, J. Radovanovic, V. Milanovic, Z. Ikonic, D. Indjin, J. Appl. Phys. 103, 083701 (2008)

    Article  ADS  Google Scholar 

  15. A. Voskoboynikov, S.S. Liu, C.P. Lee, Phys. Rev. B 59, 12514 (1999)

    Article  ADS  Google Scholar 

  16. Y. Guo, H. Wang, B.L. Gu, Y. Kawazoe, J. Appl. Phys. 88, 6614 (2000)

    Article  ADS  Google Scholar 

  17. J. Radovanovic, V. Milanovic, Z. Ikonic, D. Indjin, J. Appl. Phys. 99, 073905 (2006)

    Article  ADS  Google Scholar 

  18. S.L. Chuang, Physics of Optoelectronic Devices (Wiley, New York, 1995)

    Google Scholar 

  19. S.G. Shen, X.Q. Fan, J. Phys. Condens. Matter 9, 3151 (1997)

    Article  ADS  Google Scholar 

  20. V.I. Perel, S.A. Tarasenko, I.N. Yassievich, S.D. Ganichev, V.V. Bel’kov, W. Prettl, Phys. Rev. B 67, 201304(R) (2003)

    Article  ADS  Google Scholar 

  21. X.F. Wang, P. Vasilopoulos, F.M. Peeters, Appl. Phys. Lett. 80, 1400 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bruno Chandrasekar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrasekar, L.B., Karunakaran, M. & Gnanasekar, K. Spin-Polarized Transport in InAs/GaAs Double-Barrier Heterostructure with Electric and Magnetic Fields. J Low Temp Phys 210, 241–250 (2023). https://doi.org/10.1007/s10909-022-02872-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02872-z

Keywords

Navigation