Skip to main content

Advertisement

Log in

Improved Superconducting Performance of YBCO-Coated Conductors by Low Energy Density Argon Ion Etching

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The a-axis grains and other secondary phase impurities, which are of great suppression for the superconducting properties, are easily formed on the surface of YBa2Cu3O7-δ (YBCO)-coated conductors (CCs) prepared by trifluoroacetic acid metal organic deposition (TFA-MOD) method. Removal of these impurities is crucial to improve superconductivity and further applications. In this paper, low energy density argon ion etching method is proposed to modify the surface properties of YBCO films by removing the surface layer without damaging the epitaxial structure. It is an effective strategy to regulate the internal strain, oxygen content and Cu–O chains of YBCO films. It is demonstrated that the self-field critical current density (Jc) of the ion etched samples can be enhanced compared with the pristine one via this surface treatment. Meanwhile, the etching time is a crucial parameter to modify Jc values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.R. Foltyn, L. Civale, J.L. Macmanus-Driscoll, Q.X. Jia, B. Maiorov, H. Wang, M. Maley, Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6(9), 631–642 (2007). https://doi.org/10.1038/nmat1989

    Article  ADS  Google Scholar 

  2. G.V.S. Vulusala, S. Madichetty, Application of superconducting magnetic energy storage in electrical power and energy systems: a review. Int. J. Energy Res. 42(2), 358–368 (2018). https://doi.org/10.1002/er.3773

    Article  Google Scholar 

  3. W.H. Fietz, C. Barth, S. Drotziger, W. Goldacker, R. Heller, S.I. Schlachter, K.P. Weiss, Prospects of High Temperature Superconductors for fusion magnets and power applications. Fusion Eng. Des. 88(6–8), 440–445 (2013). https://doi.org/10.1016/j.fusengdes.2013.03.059

    Article  Google Scholar 

  4. Y. Gu, C.B. Cai, Z.Y. Liu, J. Liu, L. Liu, R.T. Huang, Effect of Ta irradiation on microstructure and current carrying properties of YBCO coated conductors with element doping. J. Appl. Phys. 130(8), 085304 (2021). https://doi.org/10.1063/5.0053158

    Article  ADS  Google Scholar 

  5. Q. Zhou, W. Wu, E.M. Mei, L.T. Sun, G.S. Zhang, J.J. Du, T. Liu, S. Jiang, J.G. Qin, C. Zhou, H. Jin, Z.J. Jin, J. Sheng, Z.Y. Li, S.S. Wang, B.F. Gu, L.X. Liu, X.S. Yang, Y. Zhao, J. Jin, Applied superconductivity and electromagnetic devices-large-scale applications and availability. IEEE Trans. Appl. Supercond. (2021). https://doi.org/10.1109/TASC.2021.3118318

    Article  Google Scholar 

  6. A.K. Jha, K. Matsumoto, Superconductive REBCO thin films and their nanocomposites: The role of rare-earth oxides in promoting sustainable energy. Front. Phys. (2019). https://doi.org/10.3389/fphy.2019.00082

    Article  Google Scholar 

  7. S.S. Wang, Z.L. Zhang, M.H. Li, M.J. Li, L.K. Gao, B. Wei, B.S. Cao, Study of precursor-solution purity for high-quality yttrium-barium-copper-oxide superconducting thin film. J. Sol-Gel Sci. Technol. 86(3), 690–698 (2018). https://doi.org/10.1007/s10971-018-4624-z

    Article  Google Scholar 

  8. X.H. Dai, J.M. Song, L. Zhao, Y.L. Wang, H.D. Zhao, B.T. Liu, YBa2Cu3O7-δ films prepared by pulsed laser deposition in O2/Ar mixture atmosphere. Appl. Phys. A. (2020). https://doi.org/10.1007/s00339-020-03690-4

    Article  Google Scholar 

  9. A. Usoskin, U. Betz, J. Gnilsen, S. Noll-Baumann, K. Schlenga, Long-length YBCO coated conductors for ultra-high field applications: gaining engineering current density via pulsed laser deposition/alternating beam-assisted deposition route. Supercond. Sci. Technol. (2019). https://doi.org/10.1088/1361-6668/ab2cba

    Article  Google Scholar 

  10. V. Matias, R.H. Hammond, YBCO superconductor wire based on IBAD-textured templates and RCE of YBCO: Process economics. Supecond. Centen. Conf. 36, 1440–1444 (2012). https://doi.org/10.1016/j.phpro.2012.06.239

    Article  Google Scholar 

  11. L. Shen, C. Liu, X.Y. Zhang, Rules of non-superconducting phase particles on crack propagation in YBCO coated conductors fabricated by the IBAD-MOCVD. Supercond. Sci. Technol. (2020). https://doi.org/10.1088/1361-6668/abad86

    Article  Google Scholar 

  12. V. Selvamanickam, G.B. Galinski, G. Carota, J. DeFrank, C. Trautwein, P. Haldar, U. Balachandran, M. Chudzik, J.Y. Coulter, P.N. Arendt, J.R. Groves, R.F. DePaula, B.E. Newnam, D.E. Peterson, High-current Y-Ba-Cu-O superconducting films by metal organic chemical vapor deposition on flexible metal substrates. Phys. C. 333(3–4), 155–162 (2000). https://doi.org/10.1016/S0921-4534(00)00231-8

    Article  ADS  Google Scholar 

  13. W.Z. Dou, Z.Y. Liu, C.H. Peng, C.Y. Bai, Y.M. Lu, Y.Q. Guo, C.B. Cai, Phase transition during heat treatment of precursor before YBa2Cu3O7-δ nucleation in TFA-MOD method. J. Supercond. Novel Magn. 29(8), 1997–2001 (2016). https://doi.org/10.1007/s10948-016-3514-2

    Article  Google Scholar 

  14. K. Nakaoka, M. Yoshizumi, Y. Usui, T. Izumi, Y. Shiohara, Effect of solution composition on superconducting properties of YBCO derived from TFA-MOD process. IEEE Trans. Appl. Supercond. (2013). https://doi.org/10.1109/TASC.2013.2238273

    Article  Google Scholar 

  15. X. Qi, J.L. MacManus-Driscoll, Liquid phase epitaxy processing for high temperature superconductor tapes. Curr. Opin. Solid State Mater. Sci. 5(4), 291–300 (2001). https://doi.org/10.1016/S1359-0286(00)00040-1

    Article  ADS  Google Scholar 

  16. S.S. Wang, B.F. Gu, F. Li, H. Wu, S. Muhammad, Y.P. Dahal, Z.S. Xiao, X.P. Ouyang, Enhanced superconducting performance in solution-derived YBa2Cu3O7-δ films using parallel ion-beam structure modification method. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.158607

    Article  Google Scholar 

  17. S.K. Tolpygo, J.Y. Lin, M. Gurvitch, S.Y. Hou, J.M. Phillips, Effect of oxygen defects on transport properties and Tc of YBa2Cu3O6+x: Displacement energy for plane and chain oxygen and implications for irradiation-induced resistivity and Tc suppression. Phys. Rev. B. 53(18), 12462–12474 (1996). https://doi.org/10.1103/PhysRevB.53.12462

    Article  ADS  Google Scholar 

  18. A.J. Pauza, W.E. Booij, K. Herrmann, D.F. Moore, M.G. Blamire, D.A. Rudman, L.R. Vale, Electron-beam damaged high-temperature superconductor Josephson junctions. J. Appl. Phys. 82(11), 5612–5632 (1997). https://doi.org/10.1063/1.366422

    Article  ADS  Google Scholar 

  19. S.A. Cybart, E.Y. Cho, T.J. Wong, B.H. Wehlin, M.K. Ma, C. Huynh, R.C. Dynes, Nano Josephson superconducting tunnel junctions in YBa2Cu3O7-δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 10(7), 598–602 (2015). https://doi.org/10.1038/NNANO.2015.76

    Article  ADS  Google Scholar 

  20. A.F. Hebard, R.M. Fleming, K.T. Short, A.E. White, C.E. Rice, A.F.J. Levi, R.H. Eick, Ion beam thinning and polishing of YBa2Cu3O7-δ films. Appl. Phys. Lett. 55(18), 1915–1917 (1989). https://doi.org/10.1063/1.102331

    Article  ADS  Google Scholar 

  21. S.S. Wang, F. Li, H. Wu, Z.L. Zhang, W. Jiang, P. Zhao, Low-energy ion beam modified surface property and mechanism of high temperature superconductor YBa2Cu3O7-δ thin film. Acta Phys. Sin. (2018). https://doi.org/10.7498/aps.67.20170822

    Article  Google Scholar 

  22. S.S. Wang, F. Li, H. Wu, Y. Zhang, S. Muhammad, P. Zhao, X.Y. Le, Z.S. Xiao, L.X. Jiang, X.D. Ou, X.P. Ouyang, Low-energy (40 keV) proton irradiation of YBa2Cu3O7-x thin films: Micro-Raman characterization and electrical transport properties. Chin. Phys. B. (2019). https://doi.org/10.1088/1674-1056/28/2/027401

    Article  Google Scholar 

  23. Z.Y. Sun, S.S. Wang, K. Wu, Q. Liu, Z. Han, Ion beam structure modification of YBa2Cu3O7-x coated conductors prepared by solution techniques. Phys. C. 412, 1331–1336 (2004). https://doi.org/10.1016/j.physc.2004.02.224

    Article  ADS  Google Scholar 

  24. A.K. Zak, W.H.A. Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size-strain plot methods. Solid State Sci. 13(1), 251–256 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.11.024

    Article  ADS  Google Scholar 

  25. H.G. Jiang, M. Ruhle, E.J. Lavernia, On the applicability of the x-ray diffraction line profile analysis in extracting grain size and microstrain in nanocrystalline materials. J. Mater. Res. 14(2), 549–559 (1999). https://doi.org/10.1557/JMR.1999.0079

    Article  ADS  Google Scholar 

  26. X. Obradors, T. Puig, S. Ricart, M. Coll, J. Gazquez, A. Palau, X. Granados, Growth, nanostructure and vortex pinning in superconducting YBa2Cu3O7 thin films based on trifluoroacetate solutions. Supercond. Sci. Technol. 25(12), 123001 (2012). https://doi.org/10.1088/0953-2048/25/12/123001

    Article  ADS  Google Scholar 

  27. S. Chromik, C. Camerlingo, M. Sojkova, V. Strbik, M. Talacko, I. Malka, I. Bar, G. Bareli, G. Jung, Low energy electron beam processing of YBCO thin films. Appl. Surf. Sci. 395, 42–49 (2017). https://doi.org/10.1016/j.apsusc.2016.07.086

    Article  ADS  Google Scholar 

  28. S. Hong, H. Cheong, G. Park, Raman analysis of a YBa2Cu3O7-δ thin film with oxygen depletion. Phys. C. 470(7–8), 383–390 (2010). https://doi.org/10.1016/j.physc.2010.02.089

    Article  ADS  Google Scholar 

  29. L. Zeng, Y.M. Lu, Z.Y. Liu, C.Z. Chen, B. Gao, C.B. Cai, Surface texture and interior residual stress variation induced by thickness of YBa2Cu3O7-δ thin films. J. Appl. Phys. (2012). https://doi.org/10.1063/1.4750037

    Article  Google Scholar 

  30. E.M. Gyorgy, R.B. van Dover, K.A. Jackson, L.F. Schneemeyer, J.V. Waszczak, Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55(3), 283–285 (1989). https://doi.org/10.1063/1.102387

    Article  ADS  Google Scholar 

  31. X.M. Cui, G.Q. Liu, J. Wang, Z.C. Huang, Y.T. Zhao, B.W. Tao, Y.R. Li, Enhancement of critical current density of YBa2Cu3O7-δ thin films by nanoscale CeO2 pretreatment of substrate surfaces. Phys. C. 466(1–2), 1–4 (2007). https://doi.org/10.1016/j.physc.2007.04.223

    Article  ADS  Google Scholar 

  32. E. Martinez, P. Mikheenko, M. Martinez-Lopez, A. Millan, A. Bevan, J.S. Abell, Flux pinning force in bulk MgB2 with variable grain size. Phys. Rev. B. 75(13), 134515 (2007). https://doi.org/10.1103/PhysRevB.75.134515

    Article  ADS  Google Scholar 

  33. D. Dew-Hughes, Flux pinning mechanisms in type II superconductors. Philos. Mag. 30(2), 293–305 (1974). https://doi.org/10.1080/14786439808206556

    Article  ADS  Google Scholar 

  34. H.B. Jian, D.F. Shao, Z.R. Yang, X.B. Zhu, Y.P. Sun, Jc enhancement and flux pinning in Y1-xGdxBCO and (Gd, Eu) codoped Y0.9-yEuyGd0.1BCO thin films by TFA-MOD. Phys. C. 488, 39–45 (2013). https://doi.org/10.1016/j.physc.2013.03.001

    Article  ADS  Google Scholar 

  35. Y.A. Opata, A.C. Wulff, J.B. Hansen, Z. Yue, J.C. Grivel, Superconducting Dy1-x(Gd, Yb)xBa2Cu3O7-δ thin films made by chemical solution deposition. IEEE Trans. Appl. Supercond. (2016). https://doi.org/10.1109/TASC.2016.2549558

    Article  Google Scholar 

  36. A. Crisan, V.S. Dang, G. Yearwood, P. Mikheenko, H. Huhtinen, P. Paturi, Investigation of the bulk pinning force in YBCO superconducting films with nano-engineered pinning centres. Phys. C. 503, 89–93 (2014). https://doi.org/10.1016/j.physc.2014.03.028

    Article  ADS  Google Scholar 

  37. M.H. Pu, Y. Feng, P.X. Zhang, L. Zhou, J.X. Wang, Investigating the flux pinning in high temperature superconductors more accurately. Phys. C. 386, 47–51 (2003). https://doi.org/10.1016/S0921-4534(02)02134-2

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported in part by the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB25000000, National Natural Science Foundation (52172271).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suchuan Zhao or Zhigang Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, S., Zeng, Z. et al. Improved Superconducting Performance of YBCO-Coated Conductors by Low Energy Density Argon Ion Etching. J Low Temp Phys 210, 484–497 (2023). https://doi.org/10.1007/s10909-022-02856-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02856-z

Keywords

Navigation