Skip to main content
Log in

Parabolic Potential and Temperature Effects on the Magnetopolaron in a RbCl Asymmetrical Semi-exponential Quantum Well

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The ground state energy (GSE), ground state binding energy (GSBE), vibrational frequency (VF) and the mean number of LO phonons (MNLOP) of the strong-coupling magnetopolaron in an asymmetrical semi-exponential quantum well are studied theoretically under uniform magnetic field along the \(z\) direction. The anisotropic parabolic potential and asymmetrical semi-exponential confinement potential effects on the GSE, the GSBE, the VF and the MNLOP are acquired with the Lee-Low-Pines unitary transformation and linear combination operation method. The temperature properties of the GSE, the GSBE, the VF and the MLOPN of the strongly coupled polaron in asymmetrical semi-exponential quantum well is studied by using the quantum statistical theory. The changes of the GSE, the GSBE, the VF and MLOPN versus temperature and cyclotron frequency in a magnetic field were discussed. It is observed from the figures that the GSE, the GSBE, the VF and the MNLOP of the strong-coupling magnetopolaron in an asymmetrical semi-exponential quantum wells are an enlarging function of the parameter \(U_{0}\), whereas it elevates with decaying the other parameter \(\sigma\). The GSE, the GSBE, the VF and the MNLOP of strong-coupling magnetopolaron rapidly increase with the increase of the confinement strengths of an anisotropic parabolic potential in the x and y directions. The GSE, the GSBE, the VF and the MNLOP of the strong-coupling magnetopolaron rapidly increase with the decrease of the effective confinement lengths of an anisotropic parabolic potential in the x and y directions. The GSE, the GSBE, the VF and the MNLOP of the strong-coupling magnetopolaron rapidly increase with increasing the cyclotron frequency of magnetic field. The GSE and the GSBE of the strong-coupling magnetopolaron increase by decreasing the temperature, whereas the VF and the MNLOP increase by increasing the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. T. Hindouri, S. Nasr, F Saidi. 173, 109182 (2020)

    Google Scholar 

  2. F. Ungan, M.K. Bahar, M.E. Mora-Ramos, Phys. Scr. 95(5), 055808 (2020)

    Article  ADS  Google Scholar 

  3. X. Li, H. Wang, Z. Oiao et al., Appl Phys Lett 114(22), 221104 (2020)

    Article  ADS  Google Scholar 

  4. K.D. Zhu, S.W. Gu, Phys. Rev. B 47, 12941 (1993)

    Article  ADS  Google Scholar 

  5. K.D. Zhu, S.W. Gu, Commun. Theor. Phys. 19, 27 (1992)

    Article  ADS  Google Scholar 

  6. H.V. Phuc, L.V. Tung, P.T. Vinh, L. Dinh, Superlattices Microstruct. 77, 267–275 (2015)

    Article  ADS  Google Scholar 

  7. A.X. Gou, J.F. Du, Superlattices Microstruct. 64, 158–166 (2013)

    Article  ADS  Google Scholar 

  8. J.L. Xiao, Superlattices Microstruct. 135, 106279 (2019)

    Article  Google Scholar 

  9. B. Donfack, F. Fotio, A.J. Fotue, L.C. Fai, Chinese. J. Phys. 66, 573–579 (2020)

    Google Scholar 

  10. B. Donfack, F. Fotio, A.J. Fotue, Eur. Phys. J. Plus. 136(2), 1–15 (2021)

    Article  Google Scholar 

  11. B. Donfack, G.T. Tedondje, T.M. Cedric, C.D.G. Ngoufack, A.J. Fotue, Am. J. Mod. Phys. 10(5), 101–110 (2021)

    Article  Google Scholar 

  12. S. Mou, K.X. Guo, B. Xiao, Superlattices Microstruct. 72, 72–82 (2014)

    Article  ADS  Google Scholar 

  13. K.X. Guo, B. Xiao, Y.C. Zhou, Z.M. Zhang, J. Opt. 17, 035505 (2015)

    Article  ADS  Google Scholar 

  14. W. Xiao, Y.J. Chen, J.L. Xiao, Chinese. J. Phys. 61, 190–193 (2019)

    Google Scholar 

  15. S. Mou, K.X. Guo, G.H. Liu, B. Xiao, Phys. B 434, 84–88 (2014)

    Article  ADS  Google Scholar 

  16. B. Xiao, K.X. Guo, S. Mou, Z.M. Zhang, Superlattices Microstruct. 69, 122–128 (2014)

    Article  ADS  Google Scholar 

  17. Y. Sun, J.L. Xiao, Superlattices Microstruct. 145, 106617 (2020)

    Article  Google Scholar 

  18. X.Q. Wang, Y.J. Chen, J.L. Xiao, Int. J. Mod. Phys. B 33(21), 1950239 (2019)

    Article  ADS  Google Scholar 

  19. Y.L. Li, J.L. Xiao, Iran J. Sci. Technol. Trans. A: Sci. 43(4), 2013–2016 (2019)

    Article  Google Scholar 

  20. W.J. Huybrechts, J. Phys. C: Solid State Phys. 10, 3761–3768 (1977)

    Article  ADS  Google Scholar 

  21. J.L. Xiao, Superlattices Microstruct. 120, 459–462 (2018)

    Article  ADS  Google Scholar 

  22. S. Mou, K.X. Guo, B. Xiao, Superlattices Microstruct. 65, 309–318 (2014)

    Article  ADS  Google Scholar 

  23. J.L. Xiao, J Low Temp. Phys. 202, 196–204 (2021)

    Article  ADS  Google Scholar 

  24. X.Q. Wang, J.L. Xiao, Int. J. Theor. Phys. 57, 3436–3442 (2018)

    Article  Google Scholar 

  25. J T Devreese., (North-Holland Publishing Company, Amsterdam,1972)

  26. S.H. Chen, J.L. Xiao, Int. J. Mod. Phys. B 21, 5331 (2007)

    Article  ADS  Google Scholar 

  27. J.K. Sun, H.J. Li, J.L. Xiao, Superlattices Microstruct. 46, 476 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Science Foundation of China under Grant No.12164032.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Lin Xiao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, W., Miao, XJ., Sun, Y. et al. Parabolic Potential and Temperature Effects on the Magnetopolaron in a RbCl Asymmetrical Semi-exponential Quantum Well. J Low Temp Phys 210, 209–231 (2023). https://doi.org/10.1007/s10909-022-02840-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02840-7

Keywords

Navigation