Skip to main content
Log in

Lateral Inverse Proximity Effect in Ti/Au Transition Edge Sensors

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

We report measured \(T_\mathrm{c}\) of superconducting Ti/Au bilayer strips with a width W varying from 5 to 50 µm. The strips were fabricated based on a Ti/Au bilayer that consists of a 41-nm-thick Ti layer to which a 280-nm-thick Au layer was added. We find that the \(T_\mathrm{c}\) drops as W decreases and the declining trend almost perfectly follows \(T_\mathrm{c}/[\mathrm{mK}] =-738.4[{\upmu } \mathrm{m}]^{2}/W^{2}+91.0\), where \(T_\mathrm{c}(W=\infty )\) of 91 mK is consistent with the intrinsic \(T_\mathrm{c}\) of the bilayer. The result is interpreted as a consequence of the lateral inverse proximity effect originated in normal-metal microstructures, namely Au overhangs that exist at the edges of the Ti/Au bilayer. The \(T_\mathrm{c}\) shift from the intrinsic \(T_\mathrm{c}\) should be anticipated in addition to the longitudinal proximity effect from superconducting Nb leads when one designs Ti/Au TESs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.D. Irwin, G.C. Hilton, Topics in Applied Physics: Cryogenic Particle Detection (Springer, Berlin, 2005)

    Google Scholar 

  2. J.E. Sadleir, S.J. Smith, S.R. Bandler, J.A. Chervenak, J.R. Clem, Phys. Rev. Lett. 104, 047003 (2010). https://doi.org/10.1103/PhysRevLett.104.047003

    Article  ADS  Google Scholar 

  3. J.E. Sadleir, S.J. Smith, K. Robinson, F.M. Finkbeiner, J.A. Chervenak, S.R. Bandler, M.E. Eckart, C.A. Kilbourne, Phys. Rev. B 84, 184502 (2011). https://doi.org/10.1103/PhysRevB.84.184502

    Article  ADS  Google Scholar 

  4. D. Barret, T.T. Lam, J.W. den Herder et al., Proc. SPIE 106991G, 15 (2018). https://doi.org/10.1117/12.2312409

    Article  Google Scholar 

  5. M. de Wit, L. Gottardi, E. Taralli, K. Nagayoshi, M.L. Ridder, H. Akamatsu, M.P. Bruijn, M. D’Andrea, J. van der Kuur, K. Ravensberg, D. Vaccaro, S. Visser, J.R. Gao, J.-W.A. den Herder, J. Appl. Phys. 128, 224501 (2020). https://doi.org/10.1063/5.0029669

    Article  ADS  Google Scholar 

  6. M.L. Ridder, K. Nagayoshi, M.P. Bruijn, L. Gottardi, E. Taralli, P. Khosropanah, H. Akamatsu, J. van der Kuur, K. Ravensberg, S. Visser, A.C.T. Nieuwenhuizen, J.R. Gao, J.W.A. den Herder, J. Low Temp. Phys. 199, 962–967 (2020). https://doi.org/10.1007/s10909-020-02401-w

    Article  ADS  Google Scholar 

  7. K. Nagayoshi, M.L. Ridder, M.P. Bruijn, L. Gottardi, E. Taralli, P. Khosropanah, H. Akamatsu, S. Visser, J.R. Gao, J. Low Temp. Phys. 199, 943–948 (2020). https://doi.org/10.1007/s10909-019-02282-8

    Article  ADS  Google Scholar 

  8. .M. Durkin, J.S. Adams, S.R. Bandler, J.A. Chervenak, S. Chaudhuri, C.S. Dawson, E.V. Denison, W.B. Doriese, S.M. Duff, F.M. Finkbeiner, C.T. FitzGerald, J.W. Fowler, J.D. Gard, G.C. Hilton, K.D. Irwin, Y.I. Joe, R.L. Kelley, C.A. Kilbourne, A.R. Miniussi, K.M. Morgan, G.C. O’Neil, C.G. Pappas, F.S. Porter, C.D. Reintsema, D.A. Rudman, K. Sakai, S.J. Smith, R.W. Stevens, D.S. Swetz, P. Szypryt, J.N. Ullom, L.R. Vale, N.A. Wakeham, J.C. Weber, B.A. Young, IEEE Trans. Appl. Supercond. 29, 1 (2019). https://doi.org/10.1109/TASC.2019.2904472

    Article  Google Scholar 

  9. D. Vaccaro, H. Akamatsu, L. Gottardi, J. van der Kuur, E. Taralli, M. de Wit, M.P. Bruijn, R. den Hartog, M. Kiviranta, A.J. van der Linden, K. Nagayoshi, K. Ravensberg, M.L. Ridder, S. Visser, B.D. Jackson, J.R. Gao, R.W.M. Hoogeveen, J.W.A. den Herder, J. Low Temp. Phys. This Special Issue (2021)

  10. S. Smith, et al., J. Low Temp. Phys. This Special Issue (2021)

Download references

Acknowledgements

This work is funded by the European Space Agency (ESA) under ESA CTP Contract No. 4000130346/20/NL/BW/os.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nagayoshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagayoshi, K., de Wit, M., Taralli, E. et al. Lateral Inverse Proximity Effect in Ti/Au Transition Edge Sensors. J Low Temp Phys 209, 540–547 (2022). https://doi.org/10.1007/s10909-022-02828-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02828-3

Keywords

Navigation