Skip to main content

Advertisement

Log in

Phonon Wind Effects on Charge Collection in Cryogenic Ge Detectors for Rare Event Searches at Low Energies

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Experimental data are presented for the charge collection efficiency for near-electrode interactions in cryogenic germanium detectors, and analyzed in terms of a model involving a phonon wind-driven expansion of the electron-hole cloud generated at the site of energy deposition. Computer simulations reproduce to an excellent accuracy the collection depth profiles as obtained by experiment and their dependence on the collection field and the nature of the electrode. Electrode-dependent effects in particular are explained by differences in the phonon reflection properties at the interface of the Ge crystal and the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. T. Shutt et al., Nucl. Instrum. Meth. A 444, 340 (2000). https://doi.org/10.1016/S0168-9002(99)01379-0

    Article  ADS  Google Scholar 

  2. J.P. Wolfe, Imaging Phonons (Cambridge University Press, USA, 1998). https://doi.org/10.1017/CBO9780511665424

    Book  Google Scholar 

  3. E.T. Swartz, R.O. Pohl, Rev. Mod. Phys. 61, 605 (1989). https://doi.org/10.1103/RevModPhys.61.605

    Article  ADS  Google Scholar 

  4. K.R. Strickland et al., Surf. Interface Anal. 18, 631 (1992). https://doi.org/10.1002/sia.740180810

    Article  Google Scholar 

  5. S. Marnieros et al., in AIP Conf. Proc., vol. 1185, p. 635 (2009). https://doi.org/10.1063/1.3292421

  6. E. Olivieri et al., in AIP Conf. Proc., vol. 1185, p. 310 (2009). https://doi.org/10.1063/1.3292566

  7. The size of the cloud is estimated from the range of a photoelectron with the incident photon energy. See e.g. T.L. Alford et al., Fundamentals of Nanoscale Film Analysis (Springer, 2007) p. 119. https://doi.org/10.1007/978-0-387-29261-8

  8. F.M. Steranka, J.P. Wolfe, Phys. Rev. Lett. 53, 2181 (1984). https://doi.org/10.1103/PhysRevLett.53.2181

    Article  ADS  Google Scholar 

  9. B.A. Young et al., Phys. Rev. Lett. 64, 2795 (1990). https://doi.org/10.1103/physrevlett.64.2795

    Article  ADS  Google Scholar 

  10. A.T. Lee et al., Phys. Rev. B. 54, 3244 (1996). https://doi.org/10.1103/PhysRevB.54.3244

    Article  ADS  Google Scholar 

  11. M. Bravin et al., J. Appl. Phys. 85, 1302 (1999). https://doi.org/10.1063/1.369261

    Article  ADS  Google Scholar 

  12. Carrier trapping in the amorphous sublayer should not make any difference in this respect, as it cannot affect measurably the balance of the induced charges in the electrode

  13. R.P. Joshi et al., Phys. Rev. B 41, 9899 (1990). https://doi.org/10.1103/physrevb.41.9899

    Article  ADS  Google Scholar 

  14. H. Demers et al., Scanning 33, 135 (2011). https://doi.org/10.1002/sca.20262

    Article  Google Scholar 

  15. M.C. Piro et al., J. Low Temp. Phys. 176, 796 (2014). https://doi.org/10.1007/s10909-014-1088-6

    Article  ADS  Google Scholar 

  16. A. Castoldi et al., in IEEE Nuclear Science Symposium and Medical Imaging Conference NI14–67, p. 961 (2012). https://doi.org/10.1109/NSSMIC.2012.6551249

  17. M.E. Msall et al., Phys. Rev. Lett. 70, 3463 (1993). https://doi.org/10.1103/PhysRevLett.70.3463

    Article  ADS  Google Scholar 

  18. M. Amman, Technical report LBNL (2017). https://doi.org/10.13140/RG.2.2.34748.08327/1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Broniatowski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Broniatowski, A., Marnieros, S. & Dumoulin, L. Phonon Wind Effects on Charge Collection in Cryogenic Ge Detectors for Rare Event Searches at Low Energies. J Low Temp Phys 209, 308–313 (2022). https://doi.org/10.1007/s10909-022-02817-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02817-6

Keywords

Navigation