Skip to main content
Log in

Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Recent experimental studies have demonstrated the simulation of Dirac equation using the discrete-time quantum walks. In this work, we add the oscillator potential and consider the simulation of a one-dimensional Dirac oscillator. Based on the coin operator, we run the quantum walk simulation and consider the effects of oscillator parameters, initial phase shifts, and masses. Compared to the Dirac equation, the probability distribution of a Dirac oscillator becomes more classical. Additionally, we find the probability distribution jumps between two spin states by changing the initial phase shift, and attribute this to the coherent nature of the two spin states. These results are hopefully to be realized in trapped-ion experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. S.E. Venegas-Andraca, Quantum Inf. Process 11, 1015 (2012)

    Article  MathSciNet  Google Scholar 

  2. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  3. D. Bouwmeester, I. Marzoli, G.P. Karman, W. Schleich, J.P. Woerdman, Phys. Rev. A 61, 013410 (1999)

    Article  ADS  Google Scholar 

  4. C.A. Ryan, M. Laforest, J.C. Boileau, R. Laflamme, Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  5. M. Karski, L. Förster, J. Choi, A. Steffen, W. Alt, D. Meschede, A. Widera, Science 325, 174 (2009)

    Article  ADS  Google Scholar 

  6. H. Schmitz, R. Matjeschk, C. Schneider, J. Glueckert, M. Enderlein, T. Huber, T. Schaetz, Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  7. A. Schreiber, K.N. Cassemiro, V. Potoček, A. Gábris, P.J. Mosley, E. Andersson, I. Jex, C. Silberhorn, Phys. Rev. Lett. 104, 050502 (2010)

    Article  ADS  Google Scholar 

  8. F.W. Strauch, Phys. Rev. A 73, 054302 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  9. A.J. Bracken, D. Ellinas, I. Smyrnakis, Phys. Rev. A 75, 022322 (2007)

    Article  ADS  Google Scholar 

  10. C.M. Chandrashekar, R. Srikanth, R. Laflamme, Phys. Rev. A 77, 032326 (2008)

    Article  ADS  Google Scholar 

  11. C.M. Chandrashekar, S. Banerjee, R. Srikanth, Phys. Rev. A 81, 062340 (2010)

    Article  ADS  Google Scholar 

  12. Y. Shikano, Interdisciplinary. Inf. Sci. 23, 33 (2017)

    MathSciNet  Google Scholar 

  13. F. Zähringer, G. Kirchmair, R. Gerritsma, E. Solano, R. Blatt, C.F. Roos, Phys. Rev. Lett. 104, 100503 (2010)

    Article  ADS  Google Scholar 

  14. R. Gerritsma, G. Kirchmair, F. Zähringer, E. Solano, R. Blatt, C.F. Roos, Nature 463, 68 (2010)

    Article  ADS  Google Scholar 

  15. D. Ito, K. Mori, E. Carriere, Nuovo Cimento A 51, 1119 (1967)

    Article  ADS  Google Scholar 

  16. P.A. Cook, Lett. Nuovo Cimento 1, 419 (1971)

    Article  Google Scholar 

  17. M. Moshinsky, A. Szczepaniak, J. Phys. A Math. Gen. 22, L817 (1989)

    Article  ADS  Google Scholar 

  18. M. Moshinsky, Y.F. Simon, The Harmonic Oscillator in Modern Physics (Harwood Academic, Amsterdam, 1996)

    MATH  Google Scholar 

  19. E. Sadurni, A.I.P. Conf, Proc. 1334, 249 (2011)

    Google Scholar 

  20. N. Ferkous, A. Bounames, Phys. Lett. A 325, 21 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Longhi, Opt. Lett. 35, 1302 (2010)

    Article  ADS  Google Scholar 

  22. N. Nayak, A. Vishwanath, arXiv: quant-ph/0010117

  23. N.B. Lovett, S. Cooper, M. Everitt, M. Trevers, V. Kendon, Phys. Rev. A 81, 042330 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. X. Zhan, L. Xiao, Z. Bian, K. Wang, X. Qiu, B.C. Sanders, W. Yi, P. Xue, Phys. Rev. Lett. 119, 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. V.V. Ramasesh, E. Flurin, M. Rudner, I. Siddiqi, N.Y. Yao, Phys. Rev. Lett. 118, 130501 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  26. E. Flurin, V.V. Ramasesh, S. Hacohen-Gourgy, L.S. Martin, N.Y. Yao, I. Siddiqi, Phys. Rev. X 7, 031023 (2017)

    Google Scholar 

  27. S. Barkhofen, T. Nitsche, F. Elster, L. Lorz, A. Gábris, I. Jex, C. Silberhorn, Phys. Rev. A 96, 033846 (2017)

    Article  ADS  Google Scholar 

  28. L. Innocenti, H. Majury, T. Giordani, N. Spagnolo, F. Sciarrino, M. Paternostro, A. Ferraro, Phys. Rev. A 96, 062326 (2017)

    Article  ADS  Google Scholar 

  29. T. Giordani, E. Polino, S. Emiliani, A. Suprano, L. Innocenti, H. Majury, L. Marrucci, M. Paternostro, A. Ferraro, N. Spagnolo, F. Sciarrino, Phys. Rev. Lett. 122, 020503 (2019)

    Article  ADS  Google Scholar 

  30. J.P. Keating, N. Linden, J.C.F. Matthews, A. Winter, Phys. Rev. A 76, 012315 (2007)

    Article  ADS  Google Scholar 

  31. Y. Shang, Y. Wang, M. Li, R. Lu, EuroPhys. Lett. 124, 60009 (2018)

    Article  Google Scholar 

  32. Y. Yang, J. Yang, Y. Zhou, W. Shi, X. Chen, J. Li, H. Zuo, Sci. China Inf. Sci. 61, 042501 (2018)

    Article  MathSciNet  Google Scholar 

  33. S. Srikara, C.M. Chandrashekar, Quantum Inf. Process 19, 295 (2020)

    Article  ADS  Google Scholar 

  34. E. Schrödinger, Sitz. Preuss. Akad. Wiss. Phys. Math. Kl 24, 418 (1930)

  35. G.H. Low, T.J. Yoder, I.L. Chuang, Phys. Rev. Lett. 114, 100801 (2015)

    Article  ADS  Google Scholar 

  36. A. Abragam, The Principles of Nuclear Magnetism (Oxford University, Oxford, 1961)

    Google Scholar 

  37. A.B. Bardon, S. Beattie, C. Luciuk, W. Cairncross, D. Fine, N.S. Cheng, G.J.A. Edge, E. Taylor, S. Zhang, S. Trotzky, J.H. Thywissen, Science 344, 722 (2014)

    Article  ADS  Google Scholar 

  38. J. Xu, Q. Gu, E.J. Mueller, Phys. Rev. A 91, 043613 (2015)

    Article  ADS  Google Scholar 

  39. M. Moshinsky, G. Loyola, A. Szczepaniak, C. Villegas, N. Aquino, The Dirac oscillator and its contribution to the baryon mass formula, in Relativistic Aspects of Nuclear Physics (World Scientific Press, Singapore, 1990), p. 271

    Google Scholar 

  40. J. Yang, J. Piekarewicz, Phys. Rev. C 102, 054308 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by Fundamental Research Funds for the Central Universities (No. FRF-TP-19-013A3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, S., Jia, D., Song, Z. et al. Discrete-Time Quantum Walks of the One-Dimensional Dirac Oscillator. J Low Temp Phys 209, 44–53 (2022). https://doi.org/10.1007/s10909-022-02804-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02804-x

Keywords

Navigation