Skip to main content
Log in

Absolute Decay Counting of \(^{146}\)Sm and \(^{147}\)Sm for Early Solar System Chronology

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Sm–Nd chronometers use \(^{146}\)Sm and \(^{147}\)Sm to determine the ages of major events in the early Solar System. Their half-lives are the most important nuclear parameters determining the accuracy of chronometry. However, the \(^{146}\)Sm half-life is not well-established: the published values differ by \(\sim\)30%, which results in significant uncertainties in the Solar System timeline. We are re-measuring the half-lives of \(^{146}\)Sm and \(^{147}\)Sm using decay energy spectroscopy and metallic magnetic calorimeters to improve the accuracy of the Sm–Nd chronometers. We report recent experimental results from our first measurement of a \(^{147}\)Sm source, as well as status and plans for experiments on \(^{146}\)Sm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. K.E. Koehler, Appl. Sci. 11, 4044 (2021). https://doi.org/10.3390/app11094044

    Article  Google Scholar 

  2. S.J. Lee et al., J. Phys. G 37, 055103 (2010). https://doi.org/10.1088/0954-3899/37/5/055103

    Article  Google Scholar 

  3. Y.S. Jang et al., Appl. Radiat. Isot. 70, 2255–2259 (2012). https://doi.org/10.1016/j.apradiso.2012.02.109

    Article  Google Scholar 

  4. A.S. Hoover et al., Anal. chem. 87, 3996–4000 (2015). https://doi.org/10.1021/acs.analchem.5b00195

    Article  Google Scholar 

  5. M. Rodrigues et al., J. Low Temp. Phys. 193, 1263–1268 (2018)

    Article  Google Scholar 

  6. PC-O. Ranitzsch, et al. J. Low Temp. Phys. 199, 441–450. (2020). https://doi.org/10.15488/10169

  7. H. Rotzinger et al., J. Low Temp. Phys. 151, 1087–1093 (2008) https://doi.org/10.1007/s10909-008-9787-5https://doi.org/10.1007/s10909-018-2008-y

  8. N.E. Marks et al., Earth Planet. Sci. Lett. 405, 15–24 (2014). https://doi.org/10.1016/j.epsl.2014.08.017

    Article  Google Scholar 

  9. L.E. Borg et al., Geochim. Cosmochim. Acta 175, 150–167 (2016). https://doi.org/10.1016/j.gca.2015.12.002

    Article  Google Scholar 

  10. T.S. Kruijer et al., Earth Planet. Sci. Lett. 474, 345–354 (2017). https://doi.org/10.1016/j.epsl.2017.06.047

    Article  Google Scholar 

  11. L.E. Borg et al., Nature 477, 70 (2011). https://doi.org/10.1038/nature10328

    Article  Google Scholar 

  12. C.L. McLeod, A.D. Brandon, R.M.G Armytage. Earth Planet. Sci. Lett.396, 179–189 (2014). https://doi.org/10.1016/j.epsl.2014.04.007

  13. F. Meissner, W.-D. Schmidt-Ott, L. Ziegeler, Z. Phys. 327, 171–174 (1987). https://doi.org/10.1007/BF01292406

    Article  Google Scholar 

  14. N. Kinoshita et al., Science 335, 1614–1617 (2012). https://doi.org/10.1126/science.1215510

    Article  Google Scholar 

  15. K. Kossert et al., Appl. Radiat. Isot. 67, 1702–1706 (2009). https://doi.org/10.1016/j.apradiso.2009.03.013

    Article  Google Scholar 

  16. A.R. Kavner, et al. submitted to J. Low. Temp. Phys.

  17. J. Dilling, R. KrÜcken, L. Merminga. (Eds.). ISAC and ARIEL: the TRIUMF radioactive beam facilities and the scientific program. Netherlands: Springer (2014). https://doi.org/10.1007/978-94-007-7963-1

  18. P. Kunz et al., EPJ Web Conf. 229, 06003 (2020). https://doi.org/10.1051/epjconf/202022906003

    Article  Google Scholar 

  19. S.G. Kim et al., IEEE Trans. Appl. Supercond. 31, 1–5 (2021). https://doi.org/10.1109/TASC.2021.3066179

    Article  Google Scholar 

  20. S.T.P. Boyd et al., J. Low Temp. Phys. 199, 681–687 (2020). https://doi.org/10.1007/s10909-020-02406-5

    Article  Google Scholar 

  21. C. Bates et al., J. Appl. Phys. Lett. 109, 023513 (2016). https://doi.org/10.1063/1.4958699

    Article  Google Scholar 

Download references

Acknowledgements

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work was funded by the Laboratory Directed Research and Development program of Lawrence Livermore National Laboratory (20-LW-024). This work was supported in part by the Department of Energy National Nuclear Security Administration, Consortium for Monitoring, Verification and Technology (DE-NE000863). This work was also supported in part by the Department of Energy National Nuclear Security Laboratory Research Graduate Fellowship. The work at Institute for Basic Science is supported by Grant no. IBS-R016-A2. LLNL-JRNL-828595. Data used in this manuscript cannot be made available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G.B., Borg, L.E., Boyd, S.T.P. et al. Absolute Decay Counting of \(^{146}\)Sm and \(^{147}\)Sm for Early Solar System Chronology. J Low Temp Phys 209, 824–831 (2022). https://doi.org/10.1007/s10909-022-02798-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02798-6

Keywords

Navigation