Skip to main content
Log in

Electronic Properties and Superconductivity in Infinite-Layer Nickelate Composts

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, we investigate the electronic and superconducting properties in nickelate compounds of \(\hbox {NiO}_2\) through perturbative density functional theory (P-DFT) and extended multi-band Bardeen–Cooper–Schrieffer (BCS) theory. We consider four different cases of study: (i) the crystalline structure composed by one layer of \(\hbox {NiO}_2\), with a central single atom of Nd, Yb or Pr, which is subjected to mechanical compression and tension forces (pressure), (ii) the crystalline structure composed by two layers of \(\hbox {NiO}_2\) with central atom pairs of Nd–Sr, Yb–Sr or Pr–Sr, with level doping \(x=0.5\), (iii) the crystalline structure composed by three layers of \(\hbox {NiO}_2\) with a setup of Nd–Nd(Sr)–Nd, Yb–Yb(Sr)–Yb or Pr–Pr(Sr)–Pr (Homogeneous and doping sample), with the level doping \(x=0.3\) and \(x=0.75\) and finally (iv) through multi-band theory we study the behavior in a single-layer \({\hbox {Nd}_{1-x}\hbox {Sr}_{x}\hbox {NiO}_2}\) when \(x=0.5\) through gaps \(\Delta _{\chi ,\mathbf{p }}\), with \(\chi\) (number of band or orbitals), only with the presence of inter-band coupling \(V_{\chi \chi '}\). As results, for (i), (ii) and (iii) we present the electronic measures of the electronic band structures e-DOS, and density of phonons (mechanical and/or optic) p-DOS. In (i), we show that under pressure there are a redistribution of the band structures for e-DOS and p-DOS, allowing the destruction of Van Hove near Fermi level \(E_\mathrm{F}\); thus, in (ii) and (iii) we show the presence of a single flat band when the doping level is \(x=0.5\), and for (iv), the inter-band coupling between orbitals plays a key role in the construction of a superconducting phase in nickelate compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.G. Bednorz, K.A. Müller, Physica B 64, 189 (1986)

    Google Scholar 

  2. V.I. Anisimov, D. Bukhvalov, T.M. Rice, Phys. Rev. B 59, 7901 (1999)

    Article  ADS  Google Scholar 

  3. K.-W. Lee, W.E. Pickett, Phys. Rev. B 70, 165109 (2004)

    Article  ADS  Google Scholar 

  4. Stewart and See GR, Rev. Mod. Phys. 56, 755 (1984)

    Article  ADS  Google Scholar 

  5. G.R. Stewart, Phys. Rev. Lett. 57, 118 (1986)

    Article  Google Scholar 

  6. H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today 21, 3 (2018)

    Article  Google Scholar 

  7. C.H. Wang, T.K. Chen, C.C. Chang, Y.C. Lee, M.J. Wang, K.C. Huang, P.M. Wu, M.K. Wu, Physica C 549, 61 (2018)

    Article  ADS  Google Scholar 

  8. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, P. Jarillo-Herrero, Nature 556, 43–50 (2018)

    Article  ADS  Google Scholar 

  9. X. Lu, P. Stepanov, W. Yang, Nature 574, 653–657 (2019)

    Article  ADS  Google Scholar 

  10. D. Li, K. Lee, B.Y. Wang, M. Osada, S. Crossley, H.R. Lee, Y. Cui, Y. Hikita, H.Y. Hwang, Nature (London) 572, 624 (2019)

    Article  ADS  Google Scholar 

  11. W.E. Pickett, Nat. Rev. Phys. 3, 7 (2021)

    Article  Google Scholar 

  12. Y. Gu, X. Zhu, S. Wang, Commun. Phys. 3, 84 (2020)

    Article  Google Scholar 

  13. E.M. Nica, J. Krishna, R. Yu, Q. Si, A.S. Botana, O. Erten, Phys. Rev. B 102, 020504 (2020)

    Article  ADS  Google Scholar 

  14. S. Bandyopadhyay, P. Adhikary, T. Das, I. Das-gupta, T. Saha-Dasgupta, Phys. Rev. B 102, 220502 (2020)

    Article  ADS  Google Scholar 

  15. E. Been, W.-S. Lee, H.Y. Hwang, Y. Cui, J. Zaa-nen, T. Devereaux, B. Moritz, C. Jia, Phys. Rev. X 11, 011050 (2021)

    Google Scholar 

  16. Y. Zhang, L.F. Lin, W. Hu, A. Moreo, S. Dong, E. Dagotto, Phys. Rev. B 102, 195117 (2020)

    Article  ADS  Google Scholar 

  17. H. Zhang, L. Jin, S. Wang, B. Xi, X. Shi, F. Ye, J.-W. Mei, Phys. Rev. Res. 2, 013214 (2020)

    Article  Google Scholar 

  18. A.S. Botana, M.R. Norman, Phys. Rev. X 10, 01102 (2020)

    Google Scholar 

  19. Y. Ji, J. Liu, L. Li, Z. Liao, J. Appl. Phys. 130, 060901 (2021)

    Article  ADS  Google Scholar 

  20. A. Botana, F. Bernardini, A. Cano, J. Exp. Theor. Phys. 132, 4 (2021)

    Article  Google Scholar 

  21. V.M. Katukuri, N.A. Bogdanov, O. Weser, J. van den Brink, A. Alavi, Phys. Rev. B 102, 241112 (2020)

    Article  ADS  Google Scholar 

  22. S. Zeng, C.S. Tang, X. Yin, C. Li, M. Li, Z. Huang, J. Hu, W. Liu, G.J. Omar, H. Jani et al., Phys. Rev. Lett. 125, 147003 (2020)

    Article  ADS  Google Scholar 

  23. D. Zhao, Y.B. Zhou, Y. Fu, L. Wang, X.F. Zhou, H. Cheng, J. Li, D.W. Song, S.J. Li, B.L. Kang et al., Phys. Rev. Lett. 126, 197001 (2021)

    Article  ADS  Google Scholar 

  24. F. Bouquet, Y. Wang, I. Sheikin, T. Plackowski, A. Junod, S. Lee, S. Tajima, Phys. Rev. Lett. 89, 257001 (2002)

    Article  ADS  Google Scholar 

  25. A.M. Gabovich, A.I. Voitenko, Low Temp. Phys. 28, 803 (2002)

    Article  ADS  Google Scholar 

  26. M.V. Milosević, F.M. Peeters, Phys. Rev. Lett. 93, 267006 (2004)

    Article  ADS  Google Scholar 

  27. C.D. Dewhurst, R. Cubitt, M.R. Eskildsen, S.M. Kazakov, J. Karpinski, J. Phys. C 404, 135 (2004)

    Article  Google Scholar 

  28. A.C. Romaguera, S. Silva, J. Math. Phys. 54, 093501 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Garaud, J. Carlström, E. Babaev, Phys. Rev. Lett. 107, 197001 (2011)

    Article  ADS  Google Scholar 

  30. C.A. Aguirre, J. Faundez, S.G. Magalhaes, J. Barba-Ortega, J. Low Temp. Phys. 207, 85 (2022)

    Article  ADS  Google Scholar 

  31. C.A. Aguirre, Q.D. Martins, J. Barba-Ortega, Physica C 581, 1353818 (2021)

    Article  ADS  Google Scholar 

  32. J. Carlström, E. Babaev, M. Speight, Phys. Rev. B 83, 174509 (2011)

    Article  ADS  Google Scholar 

  33. M.V. Milošević, R. Geurts, R. Phys, Rev. B 81, 214514 (2010)

    Article  Google Scholar 

  34. T. Nunes, C. Aguirre, A. de Arruda, J. Barba, Eur. Phys. J. B 93, 69 (2020)

    Article  ADS  Google Scholar 

  35. C. Aguirre-Tellez, E. Valbuena-Nino, J. Barba-Ortega, Rev. Ingenio 15(1), 38 (2018)

    Article  Google Scholar 

  36. J. Barba-Ortega, M. Rincon-Joya, J. Faundez-Chaura, Rev. Ingenio 15(1), 31 (2018)

    Article  Google Scholar 

  37. F. Bernardini, V. Olevano, X. Blase, A. Cano, J. Phys. Mater. 3, 035003 (2020)

    Article  Google Scholar 

  38. J. Faundez, T.N. Jorge, L. Craco, Phys. Rev. B 97, 115149 (2018)

    Article  ADS  Google Scholar 

  39. M.-Y. Choi, W.E. Pickett, K.-W. Lee, Phys. Rev. Res. 2, 033445 (2020)

    Article  Google Scholar 

  40. N.B. Kopnin, T.T. Heikkila, G.E. Volovik, Phys. Rev. B 83, 220503 (2011)

    Article  ADS  Google Scholar 

  41. V.J. Kauppila, F. Aikebaier, T.T. Heikkila, Phys. Rev. B 93, 214505 (2016)

    Article  ADS  Google Scholar 

  42. V. Peri, Z.-D. Song, B.A. Bernevig, S.D. Huber, Phys. Rev. Lett. 126, 027002 (2021)

    Article  ADS  Google Scholar 

  43. V.I. Iglovikov, F. Hébert, B. Grémaud, G.G. Batrouni, R.T. Scalettar, Phys. Rev. B 90, 094506 (2014)

    Article  ADS  Google Scholar 

  44. Z.S. Yang, A.M. Ferrenti, R.J. Cava, J. Phys. Chem. Solids 151, 109912 (2021)

    Article  Google Scholar 

  45. S. Park, S. Kang, H. Kim, K. Hoon Lee, P. Kim, S. Sim, N. Lee, B. Karuppannan, J. Kim, J. Kim, K. Ik Sim, M.J. Coak, Y. Noda, C.-H. Park, J. Hoon Kim, J.-G. Parl, Sci. Rep. 10, 20998 (2020)

    Article  ADS  Google Scholar 

  46. L. Shi, J. Ma, J.C.W. Song, 2D Mater. 7, 015028 (2019)

    Article  Google Scholar 

  47. P. Giannozzi et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  48. P. Giannozzi et al., J. Phys. Condens. Matter 29, 465901 (2017)

    Article  Google Scholar 

  49. S. Poncé, E.R. Margine, C. Verdi, F. Giustino. J. Comput, Phys. Commun. 209, 116 (2016)

    Article  ADS  Google Scholar 

  50. Y.-L. Li, W. Luo, Z. Zeng, H.-Q. Lin, H. Mao, R. Ahuja, PNAS 23, 9289 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and CAPES. C. Aguirre want to thank J. Faundéz of UFRGS. J. Barba-Ortega thanks Marcos and Alejandro for their emotional support.

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 089.229.701-89).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Aguirre.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre, C.A., Barba-Ortega, J. Electronic Properties and Superconductivity in Infinite-Layer Nickelate Composts. J Low Temp Phys 209, 78–95 (2022). https://doi.org/10.1007/s10909-022-02797-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02797-7

Keywords

Navigation