Skip to main content
Log in

Phase Diagram of Hard Core Bosons with Anisotropic Interactions

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The phase diagram of lattice hard core bosons with nearest-neighbor interactions allowed to vary independently, from repulsive to attractive, along different crystallographic directions, is studied by quantum Monte Carlo simulations. We observe a superfluid phase, as well as two crystalline phases at half filling, either checkerboard or striped. Just like in the case of isotropic interactions, no supersolid phase is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. In three dimensions, as well as lower dimensions if the tilting angle exceeds a critical value, the dipolar interaction becomes purely attractive along specific directions, making the system unstable against collapse. In these cases, the dipolar interaction must be supplemented by a short-range hard core repulsion, whose presence is customarily assumed in standard theoretical studies, to ensure thermodynamic stability.

References

  1. H. Matsuda, T. Tsuneto, Off-diagonal long-range order in solids. Progr. Theor. Phys. 46, 411 (1970). https://doi.org/10.1143/PTPS.46.411

    Article  Google Scholar 

  2. K.S. Liu, M.E. Fisher, Quantum lattice gas and the existence of a supersolid. J. Low Temp. Phys. 10(5), 655 (1973)

    Article  ADS  Google Scholar 

  3. G.G. Batrouni, R.T. Scalettar, Phase separation in supersolids. Phys. Rev. Lett. 84, 1599 (2000). https://doi.org/10.1103/PhysRevLett.84.1599

    Article  ADS  Google Scholar 

  4. F. Hébert, G.G. Batrouni, R.T. Scalettar, G. Schmid, M. Troyer, A. Dorneich, Quantum phase transitions in the two-dimensional hardcore boson model. Phys. Rev. B 65, 014513 (2001). https://doi.org/10.1103/PhysRevB.65.014513

    Article  ADS  Google Scholar 

  5. M. Boninsegni, Phase separation in mixtures of hard core bosons. Phys. Rev. Lett. 87, 087201 (2001). https://doi.org/10.1103/PhysRevLett.87.087201

    Article  ADS  Google Scholar 

  6. D. Heidarian, K. Damle, Persistent supersolid phase of hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127206 (2005). https://doi.org/10.1103/PhysRevLett.95.127206

    Article  ADS  Google Scholar 

  7. R.G. Melko, A. Paramekanti, A.A. Burkov, A. Vishwanath, D.N. Sheng, L. Balents, Supersolid order from disorder: hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127207 (2005). https://doi.org/10.1103/PhysRevLett.95.127207

    Article  ADS  Google Scholar 

  8. S. Wessel, M. Troyer, Supersolid hard-core bosons on the triangular lattice. Phys. Rev. Lett. 95, 127205 (2005). https://doi.org/10.1103/PhysRevLett.95.127205

    Article  ADS  Google Scholar 

  9. M. Boninsegni, N. Prokof’ev, Supersolid phase of hard-core bosons on a triangular lattice. Phys. Rev. Lett. 95, 237204 (2005). https://doi.org/10.1103/PhysRevLett.95.237204

    Article  ADS  Google Scholar 

  10. D. Jaksch, C. Bruder, J.I. Cirac, C.W. Gardiner, P. Zoller, Cold bosonic atoms in optical lattices. Phys. Rev. Lett. 81, 3108 (1998). https://doi.org/10.1103/PhysRevLett.81.3108

    Article  ADS  Google Scholar 

  11. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, (Academic Press, 2000), pp. 95–170. https://doi.org/10.1016/S1049-250X(08)60186-X

  12. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen De, U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond. Adv. Phys. 56(2), 243 (2007). https://doi.org/10.1080/00018730701223200

    Article  ADS  Google Scholar 

  13. P. Windpassinger, K. Sengstock, Engineering novel optical lattices. Rep. Progr. Phys. 76(8), 086401 (2013). https://doi.org/10.1088/0034-4885/76/8/086401

    Article  ADS  Google Scholar 

  14. O. Dutta, M. Gajda, P. Hauke, M. Lewenstein, D.S. Lühmann, B.A. Malomed, T. Sowiński, J. Zakrzewski, Non-standard hubbard models in optical lattices: a review. Rep. Progr. Phys. 78(6), 066001 (2015). https://doi.org/10.1088/0034-4885/78/6/066001

    Article  ADS  Google Scholar 

  15. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  16. N. Henkel, R. Nath, T. Pohl, Three-dimensional roton excitations and supersolid formation in Rydberg-excited Bose–Einstein condensates. Phys. Rev. Lett. 104, 195302 (2010). https://doi.org/10.1103/PhysRevLett.104.195302

    Article  ADS  Google Scholar 

  17. B. Juliá-Díaz, T. Graß, O. Dutta, D.E. Chang, M. Lewenstein, Engineering p-wave interactions in ultracold atoms using nanoplasmonic traps. Nat. Comm. 4, 2046 (2013). https://doi.org/10.1038/ncomms3046

    Article  ADS  Google Scholar 

  18. S.P. Yu, J.A. Muniz, C.L. Hung, H.J. Kimble, Two-dimensional photonic crystals for engineering atom-light interactions. Proc. Natl. Acad. Sci. 116(26), 12743 (2019). https://doi.org/10.1073/pnas.1822110116

    Article  ADS  Google Scholar 

  19. T. Xie, A. Orbán, X. Xing, E. Luc-Koenig, R. Vexiau, O. Dulieu, N. Bouloufa-Maafa, Engineering long-range interactions between ultracold atoms with light. J. Phys. B At. Mol. Opt. Phys. 55(3), 034001 (2022). https://doi.org/10.1088/1361-6455/ac4b40

    Article  ADS  Google Scholar 

  20. M. Boninsegni, Supersolid phases of cold atom assemblies. J. Low Temp. Phys. 168(3–4), 137 (2012). https://doi.org/10.1007/s10909-012-0571-1

    Article  ADS  Google Scholar 

  21. C. Schweizer, F. Grusdt, M. Berngruber, L. Barbiero, E. Demler, N. Goldman, I. Bloch, M. Aidelsburger, Floquet approach to 2 lattice gauge theories with ultracold atoms in optical lattices. Nat. Phys. 15(11), 1168 (2019). https://doi.org/10.1038/s41567-019-0649-7

    Article  Google Scholar 

  22. M. Aidelsburger, L. Barbiero, A. Bermudez, T. Chanda, A. Dauphin, D. González-Cuadra, P.R. Grzybowski, S. Hands, F. Jendrzejewski, J. Jünemann, G. Juzeliūnas, V. Kasper, A. Piga, S.J. Ran, M. Rizzi, G. Sierra, L. Tagliacozzo, E. Tirrito, T.V. Zache, J. Zakrzewski, E. Zohar, M. Lewenstein, Cold atoms meet lattice gauge theory. Philos. Trans. Roy. Soc. A Math. Phys. Eng. Sci. 380(2216), 20210064 (2022). https://doi.org/10.1098/rsta.2021.0064

  23. M. Baranov, Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464(3), 71 (2008). https://doi.org/10.1016/j.physrep.2008.04.007

    Article  ADS  Google Scholar 

  24. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72(12), 126401 (2009). https://doi.org/10.1088/0034-4885/72/12/126401

    Article  ADS  Google Scholar 

  25. E.A.L. Henn, J. Billy, T. Pfau, in Quantum Gas Experiments, Cold Atoms, vol. 3, ed. by P. Törmä, K. Sengstock (World Scientific Publishing, 2014), pp. 311–325. https://doi.org/10.1142/9781783264766_0014

  26. F. Cinti, M. Boninsegni, Classical and quantum filaments in the ground state of trapped dipolar bose gases. Phys. Rev. A 96, 013627 (2017). https://doi.org/10.1103/PhysRevA.96.013627

    Article  ADS  Google Scholar 

  27. Y. Kora, M. Boninsegni, Patterned supersolids in dipolar bose systems. J. Low Temp. Phys. 197(5–6), 337 (2019). https://doi.org/10.1007/s10909-019-02229-z

    Article  ADS  Google Scholar 

  28. B. Spivak, S.A. Kivelson, Phases intermediate between a two-dimensional electron liquid and wigner crystal. Phys. Rev. B 70, 155114 (2004). https://doi.org/10.1103/PhysRevB.70.155114

    Article  ADS  Google Scholar 

  29. S. Moroni, M. Boninsegni, Coexistence, interfacial energy, and the fate of microemulsions of 2d dipolar bosons. Phys. Rev. Lett. 113, 240407 (2014). https://doi.org/10.1103/PhysRevLett.113.240407

    Article  ADS  Google Scholar 

  30. L. Pollet, J.D. Picon, H.P. Büchler, M. Troyer, Supersolid phase with cold polar molecules on a triangular lattice. Phys. Rev. Lett. 104(12), 125302 (2010). https://doi.org/10.1103/PhysRevLett.104.125302

    Article  ADS  Google Scholar 

  31. C. Zhang, A. Safavi-Naini, A.M. Rey, B. Capogrosso-Sansone, Equilibrium phases of tilted dipolar lattice bosons. New J. Phys. 17, 9 (2015). https://doi.org/10.1088/1367-2630/17/12/123014

    Article  Google Scholar 

  32. F. Cinti, M. Boninsegni, Absence of superfluidity in 2d dipolar bose striped crystals. J. Low Temp. Phys. 196(5–6), 413 (2019). https://doi.org/10.1007/s10909-019-02209-3

    Article  ADS  Google Scholar 

  33. Y.C. Chen, R.G. Melko, S. Wessel, Y.J. Kao, Supersolidity from defect condensation in the extended boson hubbard model. Phys. Rev. B 77(1), 014524 (2008). https://doi.org/10.1103/PhysRevB.77.014524

    Article  ADS  Google Scholar 

  34. L. Dang, M. Boninsegni, L. Pollet, Vacancy supersolid of hard-core bosons on the square lattice. Phys. Rev. B 78, 132512 (2008). https://doi.org/10.1103/PhysRevB.78.132512

    Article  ADS  Google Scholar 

  35. N. Prokof’ev, B. Svistunov, Supersolid state of matter. Phys. Rev. Lett. 94(15), 155302 (2005). https://doi.org/10.1103/PhysRevLett.94.155302

    Article  ADS  Google Scholar 

  36. L. Dang, M. Boninsegni, L. Pollet, Disorder-induced superfluidity. Phys. Rev. B 79(21), 214529 (2009). https://doi.org/10.1103/PhysRevB.79.214529

    Article  ADS  Google Scholar 

  37. N. Prokof’ev, B. Svistunov, I. Tupitsyn, “Worm’’ algorithm in quantum Monte Carlo simulations. Phys. Lett. A 238(4), 253 (1998). https://doi.org/10.1016/S0375-9601(97)00957-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. L. Pollet, K.V. Houcke, S.M. Rombouts, Engineering local optimality in quantum Monte Carlo algorithms. J. Comput. Phys. 225(2), 2249 (2007). https://doi.org/10.1016/j.jcp.2007.03.013

    Article  ADS  MATH  Google Scholar 

  39. E.L. Pollock, D.M. Ceperley, Path-integral computation of superfluid densities. Phys. Rev. B 36(16), 8343 (1987)

    Article  ADS  Google Scholar 

  40. H.K. Wu, W.L. Tu, Competing quantum phases of hard-core bosons with tilted dipole–dipole interaction. Phys. Rev. A (2020). https://doi.org/10.1103/PhysRevA.102.053306

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada. Computing support of ComputeCanada is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Boninsegni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, P.H., Boninsegni, M. Phase Diagram of Hard Core Bosons with Anisotropic Interactions. J Low Temp Phys 209, 34–43 (2022). https://doi.org/10.1007/s10909-022-02793-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02793-x

Keywords

Navigation