Skip to main content
Log in

Thermoelectric Effects in Tunneling of Spin-Polarized Electrons in a Molecular Transistor

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Thermal transmission in a molecular transistor with fully spin-polarized electrodes subjected to a temperature gradient is considered. The problem has been solved using the density matrix method in perturbation approach over a small tunneling width. It has been found that due to the vibronic effects, a spintronic molecular transistor is characterized by negative differential thermoconductance. It has been demonstrated that in the dependence of thermopower S on the detuning energy, there is an increased number of points of change of the sign and magnitude of S comparing with that of a conventional molecular transistor. Optimal parameters, that provide the highest thermoelectric power at maximum efficiency \(P_\mathrm{me}\) for a spintronic molecular transistor, have been found. The dependences of the figure of merit ZT and \(P_\mathrm{me}\) on temperature and an external magnetic field have been calculated, and the influence of Coulomb interaction on the thermoelectric properties has been studied. It has been revealed that for nonzero Coulomb interaction, a more handy regime of thermoelectric device develops, characterized by a continuous region of external magnetic fields, which provide high values of thermoelectric power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G. Benenti, G. Casati, K. Saito, R.S. Whitney, Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Y. Dubi, M.D. Ventra, Colloquium: heat flow and thermoelectricity in atomic and molecular junctions. Rev. Mod. Phys. 83, 131 (2011)

    Article  ADS  Google Scholar 

  3. L. Cui, R. Miao, C. Jiang, E. Meyhofer, P. Reddy, Perspective: thermal and thermoelectric transport in molecular junctions. J. Chem. Phys. 146, 092201 (2017)

    Article  ADS  Google Scholar 

  4. C.M. Finch, V.M. Garcia-Suarez, C.J. Lambert, Giant thermopower and figure of merit in single-molecule devices. Phys. Rev. B 79, 033405 (2009)

    Article  ADS  Google Scholar 

  5. M. Leijnse, M.R. Wegewijs, K. Flensberg, Nonlinear thermoelectric properties of molecular junctions with vibrational coupling. Phys. Rev. B 82, 045412 (2010)

    Article  ADS  Google Scholar 

  6. P. Murphy, S. Mukerjee, J. Moore, Optimal thermoelectric figure of merit of a molecular junction. Phys. Rev. B 78, 161406(R) (2008)

    Article  ADS  Google Scholar 

  7. C.W.J. Beenakker, A.A.M. Staring, Theory of the thermopower of a quantum dot. Phys. Rev. B 46, 9667 (1992)

    Article  ADS  Google Scholar 

  8. D.M. Kennes, D. Schuricht, V. Meden, Effciency and power of a thermoelectric quantum dot device. Europhys. Lett. 102, 57003 (2013)

    Article  ADS  Google Scholar 

  9. M. Sierra, D. Sánchez, Strongly nonlinear thermovoltage and heat dissipation in interacting quantum dots. Phys. Rev. B 90, 115313 (2014)

    Article  ADS  Google Scholar 

  10. R. Swirkowicz, M. Wierzbicki, J. Barnaś, Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B 80, 195409 (2009)

    Article  ADS  Google Scholar 

  11. A. Parafilo, O.A. Ilinskaya, I. Krive, Y. Park, Thermoelectric effects in electron chiral tunneling in metallic carbon nanotubes. Superlattices Microstruct. 88, 72–79 (2015)

    Article  ADS  Google Scholar 

  12. Y.D. Zubov, O.A. Ilinskaya, I.V. Krive, A.A. Krokhin, Transport properties and enhanced figure of merit of quantum dot-based spintronic thermoelectric device. J. Phys. Condens. Matter 30, 315303 (2018)

    Article  ADS  Google Scholar 

  13. D. Segal, A. Nitzan, Spin-boson thermal rectifier. Phys. Rev. Lett. 94, 034301 (2005)

    Article  ADS  Google Scholar 

  14. M. Sierra, D. Sánchez, Nonlinear heat conduction in coulomb-blockaded quantum dots. Mater. Today Proc. 2, 483–490 (2015)

    Article  Google Scholar 

  15. M. Galperin, M.A. Ratner, A. Nitzan, Molecular transport junctions: vibrational effects. J. Phys.: Condens. Matter 19, 103201 (2007)

    ADS  Google Scholar 

  16. L. Gorelik, A. Isacsson, M. Voinova, B. Kasemo, R. Shekhter, M. Jonson, Shuttle mechanism for charge transfer in coulomb blockade nanostructures. Phys. Rev. Lett. 80, 4526 (1998)

    Article  ADS  Google Scholar 

  17. S. Braig, K. Flensberg, Vibrational sidebands and dissipative tunneling in molecular transistors. Phys. Rev. B 68, 205324 (2003)

    Article  ADS  Google Scholar 

  18. J. Koch, F. von Oppen, Franck-Condon blockade and giant Fano factors in transport through single molecules. Phys. Rev. Lett. 94, 206804 (2005)

    Article  ADS  Google Scholar 

  19. H. Park, J. Park, A.K.L. Lim, E.H. Anderson, A. Alivisatos, P.L. McEuen, Nanomechanical oscillations in a single-\(\text{ C}_{60}\) transistor. Nature 407, 57–60 (2000)

    Article  ADS  Google Scholar 

  20. P. Utko, R. Ferone, I.V. Krive, R.I. Shekhter, M. Jonson, M. Monthioux, L. Noé, J. Nygård, Nanoelectromechanical coupling in fullerene peapods probed by resonant electrical transport experiments. Nat. Commun. 1, 37 (2010)

    Article  ADS  Google Scholar 

  21. J. Martínez-Blanco, C. Nacci, S. Erwin, K. Kanisawa, E. Locane, M. Thomas, F. von Oppen, P. Brouwer, S. Fölsch, Gating a single-molecule transistor with individual atoms. Nat. Phys. 11, 640–644 (2015)

    Article  Google Scholar 

  22. L. Glazman, R. Shekhter, Inelastic resonant tunneling of electrons through a potential barrier. Sov. Phys. JETP 67, 163 (1988)

    ADS  Google Scholar 

  23. A. Mitra, I. Aleiner, A. Millis, Phonon effects in molecular transistors: quantal and classical treatment. Phys. Rev. B 69, 245302 (2004)

    Article  ADS  Google Scholar 

  24. I. Krive, R. Ferone, R.I. Shekhter, M. Jonson, P. Utko, J. Nygård, The influence of electro-mechanical effects on resonant electron tunneling through small carbon nano-peapods. New J. Phys. 10, 043043 (2008)

    Article  ADS  Google Scholar 

  25. A. Khedri, T. Costi, V. Meden, Nonequilibrium thermoelectric transport through vibrating molecular quantum dots. Phys. Rev. B 98, 195138 (2018)

    Article  ADS  Google Scholar 

  26. M.B. Tagani, H.R. Soleimani, Photon-phonon-assisted thermoelectric effects in the molecular devices. Physica E 48, 36–41 (2013)

    Article  ADS  Google Scholar 

  27. D. Segal, Heat flow in nonlinear molecular junctions: master equation analysis. Phys. Rev. B 73, 205415 (2006)

    Article  ADS  Google Scholar 

  28. J. Koch, F. von Oppen, Y. Oreg, E. Sela, Thermopower of single-molecule devices. Phys. Rev. B 70, 195107 (2004)

    Article  ADS  Google Scholar 

  29. X. Zianni, Effect of electron–phonon coupling on the thermoelectric efficiency of single-quantum-dot devices. Phys. Rev. B 82, 165302 (2010)

    Article  ADS  Google Scholar 

  30. P. Reddy, S.-Y. Jang, R.A. Segalman, A. Majumdar, Thermoelectricity in molecular junctions. Science 315, 1568 (2007)

    Article  ADS  Google Scholar 

  31. L. Cui, S. Hur, Z.A. Akbar, J.C. Klöckner, W. Jeong, F. Pauly, S.-Y. Jang, P. Reddy, E. Meyhofer, Thermal conductance of single-molecule junctions. Nature 572, 628–633 (2019)

    Article  ADS  Google Scholar 

  32. S.K. Yee, J.A. Malen, A. Majumdar, R.A. Segalman, Thermoelectricity in fullerene-metal heterojunctions. Nano Lett. 11, 4089 (2011)

    Article  ADS  Google Scholar 

  33. G. Rastelli, M. Houzet, F. Pistolesi, Resonant magneto-conductance through a vibrating nanotube. Eur. Phys. Lett. 89, 57003 (2010)

    Article  ADS  Google Scholar 

  34. G. Rastelli, M. Houzet, L. Glazman, F. Pistolesi, Interplay of magneto-elastic and polaronic effects in electronic transport through suspended carbon-nanotube quantum dots. C R Phys. 13, 410 (2012)

    Article  ADS  Google Scholar 

  35. F. Pistolesi, R. Shekhter, Tunable spin-polaron state in a singly clamped semiconducting carbon nanotube. Phys. Rev. B 92, 035423 (2015)

    Article  ADS  Google Scholar 

  36. G. Skorobagatko, S. Kulinich, I. Krive, R. Shekhter, M. Jonson, Magnetopolaronic effects in electron transport through a single-level vibrating quantum dot. Low Temp. Phys. 37, 1032 (2011)

    Article  ADS  Google Scholar 

  37. P. Trocha, J. Barnaś, Large enhancement of thermoelectric effects in a double quantum dot system due to interference and coulomb correlation phenomena. Phys. Rev. B 85, 085408 (2012)

    Article  ADS  Google Scholar 

  38. M.B. Tagani, H.R. Soleimani, Influence of electron–phonon interaction on the thermoelectric properties of a serially coupled double quantum dot system. J. Appl. Phys. 112, 103719 (2012)

    Article  ADS  Google Scholar 

  39. F. Chi, J. Zheng, X.-D. Lu, K.-C. Zhang, Thermoelectric effect in a serial two-quantum-dot. Phys. Lett. A 375, 1352–1356 (2011)

    Article  ADS  Google Scholar 

  40. Y. Dai, X.-F. Wang, P. Vasilopoulos, Y.-S. Liu, Tunable spin-polarized transport through a side-gated double quantum dot molecular junction in the coulomb blockade regime. Appl. Nanosci. 9, 1685–1693 (2019)

    Article  ADS  Google Scholar 

  41. P. Stadler, W. Belzig, G. Rastelli, Ground-state cooling of a carbon nanomechanical resonator by spin-polarized current. Phys. Rev. Lett. 113, 047201 (2014)

    Article  ADS  Google Scholar 

  42. P. Stadler, W. Belzig, G. Rastelli, Control of vibrational states by spin-polarized transport in a carbon nanotube resonator. Phys. Rev. B 91, 085432 (2015)

    Article  ADS  Google Scholar 

  43. S. Weiss, J. Brüggemann, M. Thorwart, Spin-vibronics in interacting nonmagnetic molecular nanojunctions. Phys. Rev. B 92, 045431 (2015)

    Article  ADS  Google Scholar 

  44. M. Krawiec, K.I. Wysokiński, Thermoelectric effects in strongly interacting quantum dot coupled to ferromagnetic leads. Phys. Rev. B 73, 075307 (2006)

    Article  ADS  Google Scholar 

  45. O. Ilinskaya, S. Kulinich, I. Krive, R. Shekhter, M. Jonson, Magnetically controlled single-electron shuttle. Low Temp. Phys. 41, 70 (2015)

    Article  ADS  Google Scholar 

  46. R. de Groot, F. Mueller, P. van Engen et al., New class of materials: half-metallic ferromagnets. Phys. Rev. Lett. 50, 2024–2027 (1983)

    Article  ADS  Google Scholar 

  47. M.I. Katsnelson, V.Y. Irkhin, L. Chioncel, A.I. Lichtenstein, R.A. de Groot, Half-metallic ferromagnets: from band structure to many-body effects. Rev. Mod. Phys. 80, 315 (2008)

    Article  ADS  Google Scholar 

  48. E. Wada, K. Watanabe, Y. Shirahata et al., Efficient spin injection into GaAs quantum well across \(\text{ Fe}_3\text{ O}_4\) spin filter. Appl. Phys. Lett. 96, 1025101–1025103 (2010)

    Article  Google Scholar 

  49. Y. Ji, G.J. Strijkers, F.Y. Yang, C.L. Chien, J.M. Byers, A. Anguelouch, G. Xiao, A. Gupta, Determination of the spin polarization of half-metallic \(\text{ Cr }\text{ O}_2\) by point contact Andreev reflection. Phys. Rev. Lett. 86, 5585 (2001)

    Article  ADS  Google Scholar 

  50. G. Banach, R. Tyer, W.M. Temmerman, Study of half-metallicity in LSMO. J. Magn. Magn. Mater. 272, 1963–1964 (2004)

    Article  ADS  Google Scholar 

  51. L.Y.G.S.I. Kulinich, A.N. Kalinenko, I.V. Krive, R.I. Shekhter, Y.W. Park, M. Jonson, Single-electron shuttle based on electron spin. Phys. Rev. Lett. 112, 117206 (2014)

    Article  ADS  Google Scholar 

  52. O. Ilinskaya, D. Radic, H. Park, I. Krive, R. Shekhter, M. Jonson, Coulomb-promoted spintromechanics in magnetic shuttle devices. Phys. Rev. B 100, 045408 (2019)

    Article  ADS  Google Scholar 

  53. A. Shkop, O. Bahrova, S. Kulinich, I. Krive, Interplay of vibration and coulomb effects in transport of spin-polarized electrons in a single-molecule transistor. Superlattices Microstruct. 37, 106356 (2020)

    Article  Google Scholar 

  54. O. Bahrova, S. Kulinich, I. Krive, Polaronic effects induced by non-equilibrium vibrons in a single-molecule transistor. Low Temp. Phys./Fizika Nizkikh Temperatur 46, 799–804 (2020)

    Google Scholar 

  55. L. Gorelik, S. Kulinich, R. Shekhter, M. Jonson, V. Vinokur, Coulomb promotion of spin-dependent tunnelling. Phys. Rev. Lett. 95, 116806 (2005)

    Article  ADS  Google Scholar 

  56. C.A. Perroni, D. Ninno, V. Cataudella, Electron-vibration effects on the thermoelectric efficiency of molecular junctions. Phys. Rev. B 90, 125421 (2014)

    Article  ADS  Google Scholar 

  57. M.B. Tagani, H.R. Soleimani, Thermoelectric effects in a double quantum dot system weakly coupled to ferromagnetic leads. Solid State Comm. 152, 914–918 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks I.V. Krive for conceptualization of the problem and useful advices and S.I. Kulinich, O.A. Ilinskaya and O.M. Bahrova for fruitful discussions. This work is supported by the National Academy of Sciences of Ukraine (Scientific Program 1.4.10.26.4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Shkop.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shkop, A.D. Thermoelectric Effects in Tunneling of Spin-Polarized Electrons in a Molecular Transistor. J Low Temp Phys 208, 248–270 (2022). https://doi.org/10.1007/s10909-022-02758-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02758-0

Keywords

Navigation