Skip to main content
Log in

Study on the Curvature of Lagrangian Trajectories in Thermal Counterflow

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Small particle trajectories are visualized in thermal counterflow using the particle tracking velocimetry technique, and the curvature of two-dimensional Lagrangian trajectories are studied. It is found that the probability density function of the curvature demonstrates a power-law tail similar to that of classical turbulence. The curvature distribution is classified into three regions with high, medium, and low values, and the particle velocity is averaged in each region. Furthermore, the particle velocity in the low curvature region clearly shows a bimodal distribution and agrees with the two-fluid model in the case of low heat flux. However, in the high curvature region, the particle velocity deviates from the theoretical value and exhibits a Gaussian distribution. We understand from the visualized particle trajectories that the high curvature region corresponds to a complex trajectory that interacts with a quantum vortex, but the low curvature region indicates an almost straight line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Data are available on reasonable request.

References

  1. G.P. Bewley, D.P. Lathrop, K.R. Sreenivasan, Visualization of quantized vortices. Nature 441, 588 (2006)

    Article  ADS  Google Scholar 

  2. M.S. Paoletti, R.B. Fiorito, K.R. Sreenivasan, D.P. Lathrop, Visualization of superfluid helium flow. J. Phys. Soc. Jpn 77, 111007 (2008)

    Article  ADS  Google Scholar 

  3. M. La Mantia, L. Skrbek, Quantum or classical turbulence? Europhys. Lett. 105, 46002 (2014)

    Article  ADS  Google Scholar 

  4. M. La Mantia, L. Skrbek, Quantum turbulence visualized by particle dynamics. Phys. Rev. B 90, 014519 (2014)

    Article  ADS  Google Scholar 

  5. B. Mastracci, W. Guo, Exploration of thermal counterflow in He II using particle tracking velocimetry. Phys. Rev. Fluids 3, 063304 (2018)

    Article  ADS  Google Scholar 

  6. Y. Tang, S. Bao, W. Guo, Superdiffusion of quantized vortices uncovering scaling laws in quantum turbulence. Proc. Natl Acad. Sci. USA 118, e2021957118 (2021)

    Article  Google Scholar 

  7. W. Kubo, Y. Tsuji, Statistical properties of small particle trajectories in a fully developed turbulent state in He-II. J. Low Temp. Phys. 196, 170 (2019)

    Article  ADS  Google Scholar 

  8. P. Švančara, D. Duda, P. Hrubcová, M. Rotter, L. Skrbek, M. La Mantia, E. Durozoy, P. Diribarne, B. Rousset, M. Bourgoin, M. Gibert, Ubiquity of particle–vortex interactions in turbulent counterflow of superfluid helium. J. Fluid Mech. 911, A8 (2021)

    Article  MathSciNet  Google Scholar 

  9. H. Xu, N.T. Ouellette, E. Bodenschatz, Curvature of Lagrangian trajectories in turbulence. Phys. Rev. Lett. 98, 050201 (2007)

    Article  ADS  Google Scholar 

  10. Y. Yang, M. Wan, W.H. Matthaeus, Y. Shi, T.N. Parashar, Q. Lu, S. Chen, Role of magnetic field curvature in magnetohydrodynamic turbulence. Phys. Plasmas 26, 072306 (2019)

    Article  ADS  Google Scholar 

  11. N. Sakaki, T. Maruyama, Y. Tsuji, Statistics of the Lagrangian trajectories’ curvature in thermal counterflow. J. Low Temp. Phys. (2022). https://doi.org/10.1007/s10909-022-02674-3

    Article  Google Scholar 

  12. T.V. Chagovets, S.W. Sciver, A study of thermal counterflow using particle tracking velocimetry. Phys. Fluids 23, 107102 (2011)

    Article  ADS  Google Scholar 

  13. We use particle tracking algorithm developed by John Crocker, Eric Weeks and David Grier

  14. W. Braun, F. De Lillo, B. Eckhardt, Geometry of particle paths in turbulent flows. J. Turbul. 7, N62 (2006)

    Article  MathSciNet  Google Scholar 

  15. M. La Mantia, Particle trajectories in thermal counterflow of superfluid helium in a wide channel of square cross section. Phys. Fluids 28, 024102 (2016)

    Article  ADS  Google Scholar 

  16. B. Mastracci, S. Takada, W. Guo, Study of particle motion in He II counterflow across a wide heat flux range. J. Low Temp. Phys. 187, 446 (2017)

    Article  ADS  Google Scholar 

  17. M. La Mantia, D. Duda, M. Rotter, L. Skrbek, Lagrangian accelerations of particles in superfluid turbulence. J. Fluid Mech. 717, R9 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers JP19H00747, JP19H00641. This work was also financially supported by JST SPRING, Grant Number JPMJSP2125. The author N. S. would like to take this opportunity to thank the “Interdisciplinary Frontier Next-Generation Researcher Program of the Tokai Higher Education and Research System.” The experimental support by Mr. S. Waki was indispensable in our measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoto Sakaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakaki, N., Maruyama, T. & Tsuji, Y. Study on the Curvature of Lagrangian Trajectories in Thermal Counterflow. J Low Temp Phys 208, 223–238 (2022). https://doi.org/10.1007/s10909-022-02734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02734-8

Keywords

Navigation