Skip to main content
Log in

Molecular Dynamic Simulations of Clathrate Hydrate Structures I: Lattice Constant and Thermal Expansion

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Molecular dynamic (MD) simulations of hydrates of methane (CH4) and carbon dioxide (CO2) were carried out. The force fields TIP4P/2005, OPLS-UA, and TraPPE, were used. The lattice constant and thermal expansion coefficient were obtained as a function of temperature. Considering the results of the current simulations and experimental literature data, a simple, meaningful polynomial (a function of temperature) was used to fit the obtained lattice constants from 0 to 283.15 K. The derivative structural property of the isobaric thermal expansion coefficient was calculated from fluctuation through MD simulations. While failing to capture the true behavior at low temperatures (i.e., less than 100 K), the MD simulation results of lattice constants and isobaric thermal expansion coefficients are consistent at higher temperatures, which is the most important situation for practical applications of hydrates as energy source or gas storage medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. https://www.eia.gov/todayinenergy/detail.php?id=41433

  2. S. De, S. Bandyopadhyay, M. Assadi, D.A. Mukherjee, Sustainable energy technology and policies (Springer, 2018)

    Book  Google Scholar 

  3. H.P. Veluswamy, A. Kumar, Y. Seo, J.D. Lee, P. Linga, A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates. Appl. Energy 216, 262–285 (2018)

    Article  Google Scholar 

  4. E. Heidaryan, A. Salarabadi, J. Moghadasi, A. Dourbash, A new high performance gas hydrate inhibitor. J. Nat. Gas Chem. 19(3), 323–326 (2010)

    Article  Google Scholar 

  5. C. Tang, X. Zhou, D. Li, X. Zhao, D. Liang, In situ Raman investigation on mixed CH4-C3H8 hydrate dissociation in the presence of polyvinylpyrrolidone. Fuel 214, 505–511 (2018)

    Article  Google Scholar 

  6. B. Shi, Y. Liu, L. Ding, X. Lv, J. Gong, New simulator for gas-hydrate slurry stratified flow based on the hydrate kinetic growth model. J. Energy Resour. Technol. 141(1), 871 (2019)

    Article  Google Scholar 

  7. S. Eini, G.M. Kontogeorgis, D. Rashtchian, Cost optimization and flexibility analysis for the liquefaction of an associated natural gas stream. J. Energy Resour. Technol. 142(6), 5 (2020)

    Article  Google Scholar 

  8. H. Kolahdooz, M. Nazari, M.H. Kayhani, R. Ebrahimi, O. Askari, Effect of obstacle type on methane-air flame propagation in a closed duct: an experimental study. J. Energy Resour. Technol. 141(11), 61 (2019)

    Article  Google Scholar 

  9. Z.R. Chong, S.H.B. Yang, P. Babu, P. Linga, X.S. Li, Review of natural gas hydrates as an energy resource: prospects and challenges. Appl. Energy 162, 1633–1652 (2016)

    Article  Google Scholar 

  10. P. Englezos, Clathrate hydrates. Ind. Eng. Chem. Res. 32(7), 1251–1274 (1993)

    Article  Google Scholar 

  11. J.M. Schicks, M. Luzi-Helbing, Cage occupancy and structural changes during hydrate formation from initial stages to resulting hydrate phase. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 115, 528–536 (2013)

    Article  ADS  Google Scholar 

  12. J. Chen, Y.H. Wang, X.M. Lang, S.S. Fan, Energy-efficient methods for production methane from natural gas hydrates. J. Energy Chem. 24(5), 552–558 (2015)

    Article  Google Scholar 

  13. P.S.R. Prasad, Y. Sowjanya, K.S. Prasad, Micro-Raman investigations of mixed gas hydrates. Vib. Spectrosc. 50(2), 319–323 (2009)

    Article  Google Scholar 

  14. H. Hirai, K. Komatsu, M. Honda, T. Kawamura, Y. Yamamoto, T. Yagi, Phase changes of CO hydrate under high pressure and low temperature. J. Chem. Phys. 133(12), 124511 (2010)

    Article  ADS  Google Scholar 

  15. R.K. McMullan, G.A. Jeffrey, Polyhedral clathrate hydrates. IX. structure of ethylene oxide hydrate. J. Chem. Phys. 42(8), 2725–2732 (1965)

    Article  ADS  Google Scholar 

  16. P.M. Rodger, Methane hydrate: melting and memory. Ann. N. Y. Acad. Sci. 912(1), 474–482 (2000)

    Article  ADS  Google Scholar 

  17. Ruppel, C. D. (2018). Gas hydrate in nature (No. 2017–3080). US Geological Survey.

  18. C.A. Koh, Towards a fundamental understanding of natural gas hydrates. Chem. Soc. Rev. 31(3), 157–167 (2002)

    Article  Google Scholar 

  19. W. Wang, C.L. Bray, D.J. Adams, A.I. Cooper, Methane storage in dry water gas hydrates. J. Am. Chem. Soc. 130(35), 11608–11609 (2008)

    Article  Google Scholar 

  20. D.Y. Kim, Y. Park, H. Lee, Tuning clathrate hydrates: application to hydrogen storage. Catal. Today 120(3–4), 257–261 (2007)

    Article  Google Scholar 

  21. A. Demirbas, Methane hydrates as potential energy resource: part 2–Methane production processes from gas hydrates. Energy Convers. Manage. 51(7), 1562–1571 (2010)

    Article  Google Scholar 

  22. A. Jarrahian, E. Heidaryan, Natural gas hydrate promotion capabilities of toluene sulfonic acid isomers. Pol. J. Chem. Technol. 16(1), 97–102 (2014)

    Article  Google Scholar 

  23. T. Uchida, S. Takeya, L.D. Wilson, C.A. Tulk, J.A. Ripmeester, J. Nagao, H. Narita, Measurements of physical properties of gas hydrates and in situ observations of formation and decomposition processes via Raman spectroscopy and X-ray diffraction. Can. J. Phys. 81(1–2), 351–357 (2003)

    Article  ADS  Google Scholar 

  24. K.C. Hester, Z. Huo, A.L. Ballard, C.A. Koh, K.T. Miller, E.D. Sloan, Thermal expansivity for sI and sII clathrate hydrates. J. Phys. Chem. B 111(30), 8830–8835 (2007)

    Article  Google Scholar 

  25. L. Lundgaard, J. Mollerup, Calculation of phase diagrams of gas-hydrates. Fluid Phase Equilib. 76, 141–149 (1992)

    Article  Google Scholar 

  26. Ballard, A. L. (2002). Non-ideal hydrate solid solution model for a multi-phase equilibria program, A (Doctoral dissertation, Colorado School of Mines. Arthur Lakes Library).

  27. D. Kumar, M.K. Sen, N.L. Bangs, Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data. J. Geophys. Res.: Solid Earth 112, 36 (2007)

    Google Scholar 

  28. S. Takeya, K.A. Udachin, I.L. Moudrakovski, R. Susilo, J.A. Ripmeester, Direct space methods for powder X-ray diffraction for guest− host materials: applications to cage occupancies and guest distributions in clathrate hydrates. J. Am. Chem. Soc. 132(2), 524–531 (2010)

    Article  Google Scholar 

  29. A. Gupta, S.F. Dec, C.A. Koh, E.D. Sloan, NMR investigation of methane hydrate dissociation. J. Phys. Chem. C 111(5), 2341–2346 (2007)

    Article  Google Scholar 

  30. C.A. Tulk, J.A. Ripmeester, D.D. Klug, The application of Raman spectroscopy to the study of gas hydrates. Ann. N. Y. Acad. Sci. 912(1), 859–872 (2000)

    Article  ADS  Google Scholar 

  31. D.É.S. de Menezes, A.K. Sum, A. Desmedt, A.P. de Filho, M.D.R. Fuentes, Coexistence of sI and sII in methane-propane hydrate former systems at high pressures. Chem. Eng. Sci. 208, 115149 (2019)

    Article  Google Scholar 

  32. E.D. Sloan Jr., C.A. Koh, Clathrate hydrates of natural gases (CRC Press, 2007)

    Book  Google Scholar 

  33. N.J. English, J.M.D. MacElroy, Perspectives on molecular simulation of clathrate hydrates: progress, prospects and challenges. Chem. Eng. Sci. 121, 133–156 (2015)

    Article  Google Scholar 

  34. M.T. Kirchner, R. Boese, W.E. Billups, L.R. Norman, Gas hydrate single-crystal structure analyses. J. Am. Chem. Soc. 126(30), 9407–9412 (2004)

    Article  Google Scholar 

  35. M.V. Kirov, Nanostructural approach to proton ordering in gas hydrate cages. J. Struct. Chem. 44(3), 420–428 (2003)

    Article  Google Scholar 

  36. F. Takeuchi, M. Hiratsuka, R. Ohmura, S. Alavi, A.K. Sum, K. Yasuoka, Water proton configurations in structures I, II, and H clathrate hydrate unit cells. J. Chem. Phys. 138(12), 124504 (2013)

    Article  ADS  Google Scholar 

  37. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81(1), 511–519 (1984)

    Article  ADS  Google Scholar 

  38. W.G. Hoover, Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 31(3), 1695 (1985)

    Article  ADS  Google Scholar 

  39. U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth particle mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995)

    Article  ADS  Google Scholar 

  40. F.L. Ning, K. Glavatskiy, Z. Ji, S. Kjelstrup, T.H. Vlugt, Compressibility, thermal expansion coefficient and heat capacity of CH4 and CO2 hydrate mixtures using molecular dynamics simulations. Phys. Chem. Chem. Phys. 17(4), 2869–2883 (2015)

    Article  Google Scholar 

  41. J.L. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123(23), 234505 (2005)

    Article  ADS  Google Scholar 

  42. C. McBride, C. Vega, E.G. Noya, R. Ramírez, L.M. Sesé, Quantum contributions in the ice phases: the path to a new empirical model for water—TIP4PQ/2005. J. Chem. Phys. 131(2), 24506 (2009)

    Article  Google Scholar 

  43. W.L. Jorgensen, J.D. Madura, C.J. Swenson, Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106(22), 6638–6646 (1984)

    Article  Google Scholar 

  44. J.J. Potoff, J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. AIChE J. 47(7), 1676–1682 (2001)

    Article  Google Scholar 

  45. E. Heidaryan, M.D.R. Fuentes, P. de Alcântara Pessôa Filho, Equilibrium of methane and carbon dioxide hydrates below the freezing point of water: literature review and modeling. J. Low Temp. Phys. 194(1–2), 27–45 (2019)

    Article  ADS  Google Scholar 

  46. I.M. Chou, A. Sharma, R.C. Burruss, J. Shu, H.K. Mao, R.J. Hemley, S.H. Kirby, Transformations in methane hydrates. Proc. Natl. Acad. Sci. 97(25), 13484–13487 (2000)

    Article  ADS  Google Scholar 

  47. J. Costandy, V.K. Michalis, I.N. Tsimpanogiannis, A.K. Stubos, I.G. Economou, Molecular dynamics simulations of pure methane and carbon dioxide hydrates: lattice constants and derivative properties. Mol. Phys. 114(18), 2672–2687 (2016)

    Article  ADS  Google Scholar 

  48. J. Costandy, V.K. Michalis, I.N. Tsimpanogiannis, A.K. Stubos, I.G. Economou, The role of intermolecular interactions in the prediction of the phase equilibria of carbon dioxide hydrates. J. Chem. Phys. 143(9), 94506 (2015)

    Article  Google Scholar 

  49. S. Mao, D. Zhang, Y. Li, N. Liu, An improved model for calculating CO2 solubility in aqueous NaCl solutions and the application to CO2–H2O–NaCl fluid inclusions. Chem. Geol. 347, 43–58 (2013)

    Article  ADS  Google Scholar 

  50. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, 2017)

    Book  MATH  Google Scholar 

  51. Plimpton, S. (1993). Fast parallel algorithms for short-range molecular dynamics (No. SAND-91–1144). Sandia National Labs., Albuquerque, NM (United States).

  52. C. Gutt, B. Asmussen, W. Press, M.R. Johnson, Y.P. Handa, J.S. Tse, The structure of deuterated methane–hydrate. J. Chem. Phys. 113(11), 4713–4721 (2000)

    Article  ADS  Google Scholar 

  53. A.G. Ogienko, A.V. Kurnosov, A.Y. Manakov, E.G. Larionov, A.I. Ancharov, M.A. Sheromov, A.N. Nesterov, Gas hydrates of argon and methane synthesized at high pressures: composition, thermal expansion, and self-preservation. J. Phys. Chem. B 110(6), 2840–2846 (2006)

    Article  Google Scholar 

  54. S. Takeya, M. Kida, H. Minami, H. Sakagami, A. Hachikubo, N. Takahashi, A. Obzhirov, Structure and thermal expansion of natural gas clathrate hydrates. Chem. Eng. Sci. 61(8), 2670–2674 (2006)

    Article  Google Scholar 

  55. R. Susilo, J.A. Ripmeester, P. Englezos, Characterization of gas hydrates with PXRD, DSC, NMR, and Raman spectroscopy. Chem. Eng. Sci. 62(15), 3930–3939 (2007)

    Article  Google Scholar 

  56. T. Ikeda, O. Yamamuro, T. Matsuo, K. Mori, S. Torii, T. Kamiyama, S. Mae, Neutron diffraction study of carbon dioxide clathrate hydrate. J. Phys. Chem. Solids 60(8–9), 1527–1529 (1999)

    Article  ADS  Google Scholar 

  57. R.W. Henning, A.J. Schultz, V. Thieu, Y. Halpern, Neutron diffraction studies of CO2 clathrate hydrate: formation from deuterated ice. J. Phys. Chem. A 104(21), 5066–5071 (2000)

    Article  Google Scholar 

  58. T. Ikeda, S. Mae, O. Yamamuro, T. Matsuo, S. Ikeda, R.M. Ibberson, Distortion of host lattice in clathrate hydrate as a function of guest molecule and temperature. J. Phys. Chem. A 104(46), 10623–10630 (2000)

    Article  Google Scholar 

  59. K.A. Udachin, C.I. Ratcliffe, J.A. Ripmeester, Structure, composition, and thermal expansion of CO2 hydrate from single crystal X-ray diffraction measurements. J. Phys. Chem. B 105(19), 4200–4204 (2001)

    Article  Google Scholar 

  60. S. Circone, L.A. Stern, S.H. Kirby, W.B. Durham, B.C. Chakoumakos, C.J. Rawn, Y. Ishii, CO2 hydrate: synthesis, composition, structure, dissociation behavior, and a comparison to structure I CH4 hydrate. J. Phys. Chem. B 107(23), 5529–5539 (2003)

    Article  Google Scholar 

  61. T.C. Hansen, A. Falenty, W.F. Kuhs, Lattice constants and expansivities of gas hydrates from 10 K up to the stability limit. J. Chem. Phys. 144(5), 054301 (2016)

    Article  ADS  Google Scholar 

  62. Costandy, J., Michalis, V. K., Tsimpanogiannis, I. N., Stubos, A. K., & Economou, I. G. (2016). Lattice constants of pure methane and carbon dioxide hydrates at low temperatures. Implementing quantum corrections to classical molecular dynamics studies. The Journal of chemical physics, 144(12): 124512.

  63. A. Falenty, T.C. Hansen, W.F. Kuhs, Formation and properties of ice XVI obtained by emptying a type sII clathrate hydrate. Nature 516(7530), 231–233 (2014)

    Article  ADS  Google Scholar 

  64. V.P. Shpakov, J.S. Tse, C.A. Tulk, B. Kvamme, V.R. Belosludov, Elastic moduli calculation and instability in structure I methane clathrate hydrate. Chem. Phys. Lett. 282(2), 107–114 (1998)

    Article  ADS  Google Scholar 

  65. R. Sun, Z. Duan, An accurate model to predict the thermodynamic stability of methane hydrate and methane solubility in marine environments. Chem. Geol. 244(1–2), 248–262 (2007)

    Article  ADS  Google Scholar 

  66. E. Heidaryan, A note on model selection based on the percentage of accuracy-precision. J. Energy Res. Technol. 141(4), 9813 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehsan Heidaryan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heidaryan, E., de Alcântara Pessôa Filho, P. & Fuentes, M.D.R. Molecular Dynamic Simulations of Clathrate Hydrate Structures I: Lattice Constant and Thermal Expansion. J Low Temp Phys 207, 227–240 (2022). https://doi.org/10.1007/s10909-022-02725-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02725-9

Keywords

Navigation