Skip to main content
Log in

Investigation of Spontaneous Polarization and Phase Transition Phenomena in KH2PO4-Type Crystals by Green’s Function Approach

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

In this paper, the spontaneous polarization and the phase transition of order–disorder type H-bonded KH2PO4-type crystals are theoretically investigated. With the help of a modified (presently) model Hamiltonian, and by applying the double-time thermal-dependent statistical Green’s function technique and Dyson’s equation, various expressions are derived for KH2PO4-type crystals. In this (PLCM) model, the direct spin–spin interaction term, the four-body interaction term, extra spin–phonon interaction term, and the third-order and fourth-order lattice anharmonic interactions terms are considered. Theoretical expressions for the spontaneous polarization, Cochran’s soft-mode frequency, energy shift and width, permittivity, and tangent delta (tanδ) are derived. Thermal variations for these quantities with temperature are found. The formulae for these quantities are derived by using Green’s function method. Model values are fitted for a KH2PO4 crystal to obtain the variation with temperature. The results are compared with experimental variations reported by other workers (Kaminow and Damen, Phys Rev Lett 20(20):1105, 1968; Von and Bantle, Helv Phys Acta 17:298–318, 1944). A good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. I.P. Kaminow, T.C. Damen, Phys. Rev. Lett. 20(20), 1105 (1968)

    Article  ADS  Google Scholar 

  2. A.A. Von, W. Bantle, Helv. Phys. Acta 17, 298–318 (1944)

    Google Scholar 

  3. M.I. Khan, T.C. Upadhyay, Appl. Phys. A 126(11), 1–10 (2020)

    Google Scholar 

  4. W. Cochran, Adv. Phys. 9, 387 (1960)

    Article  ADS  Google Scholar 

  5. R. Blinc, J. Phys. Chem. Solids 13(3–4), 204–211 (1960)

    Article  ADS  Google Scholar 

  6. P.G. De Gennes, Solid State Commun. 1(6), 132–137 (1963)

    Article  ADS  Google Scholar 

  7. G.L. Paul, W. Cochran, W.J.L. Buyers, R.A. Cowley, Phys. Rev. B 2(11), 4603 (1970)

    Article  ADS  Google Scholar 

  8. C.Y. She, T.W. Broberg, L.S. Wall, D.F. Edwards, Phys. Rev. B 6(5), 1847 (1972)

    Article  ADS  Google Scholar 

  9. P.S. Peercy, Phys. Rev. B 12(7), 2725 (1975)

    Article  ADS  Google Scholar 

  10. V. Ramakrishnan, T. Tanaka, Phys. Rev. B 16, 422 (1977)

    Article  ADS  Google Scholar 

  11. S. Ganguli, D. Nath, B.K. Chaudhuri, Phys. Rev. B 21(7), 2937 (1980)

    Article  ADS  Google Scholar 

  12. T.C. Upadhyay, B.S. Semwal, Indian J. Pure Appl. Phys. 40, 615–619 (2002)

    Google Scholar 

  13. R.A. Kumari, R. Chandramani, Indian J. Pure Appl. Phys. 43(2), 123–128 (2005)

    Google Scholar 

  14. H. Mashiyama, J. Korean Phys. Soc. 46(1), 63–68 (2005)

    Google Scholar 

  15. B. Strukov, I. Shnaidshtein, S. Grabovsky, Condens. Matter Phys. (2007). https://doi.org/10.5488/CMP.10.1.111

    Article  Google Scholar 

  16. K. Mayilvani, R.S. Sreenivasan, Int. J. Innov. Res. Dev. 1(11), 132–141 (2012)

  17. H.A.R. Aliabad, M. Fathabadi, I. Ahmad, Int. J. Quantum Chem. 113(6), 865–872 (2013)

    Article  Google Scholar 

  18. S. Koval, J. Kohanoff, R.L. Migoni, E. Tosatti, Phys. Rev. Lett. 89(18), 187602 (2002)

    Article  ADS  Google Scholar 

  19. S. Ravi, S. Chenthamarai, R. Jayavel, IOSR J. Appl. Phys. 7(2), 39–44 (2015)

    Google Scholar 

  20. D. Raturi, T.C. Upadhyay, Indian J. Pure Appl. Phys. 54(10), 629–633 (2016)

    Google Scholar 

  21. A. Rawat, T.C. Upadhyay, Int. J. Mod. Phys. B 31(32), 1750260 (2017)

    Article  ADS  Google Scholar 

  22. Z. Wu, Z. Wang, H. Ren, H. Qi, L. Zhang, Y. Zhou, Q. Gu, X. Sun, D. Hu, X. Xu, J. Phys. Condens. Matter 30(2), 02LT01 (2017)

    Article  Google Scholar 

  23. N. Sinha, K. Batra, S. Bhukkal, R. Kumar, S. Kumar, S. Goel, B. Kumar, Arab. J. Chem. 13(6), 5750–5764 (2020)

    Article  Google Scholar 

  24. M.I. Khan, T.C. Upadhyay, Eur. Phys. J. Plus 136(1), 1–14 (2021)

    Article  Google Scholar 

  25. P. Singh, T.C. Upadhyay, Appl. Innov. Res. 2, 32–35 (2020)

    Google Scholar 

  26. D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Professor K. P. Singh Chandigarh and Professor Mahavir Singh HPU Shimla, Professor H. C. Chandola (Nainital), and Professor R. K. Shukla for their encouragement. Kuldeep Kumar is thankful to Dr. Anubhuti, Dr. Aanchal, Mr. Pawan Singh, Mr. Muzaffar Iqbal Khan, Mr. Aditya Joshi, and Mr. Mool Chand for encouragement. Kuldeep Kumar is thankful to MOTA, Delhi for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuldeep Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K., Upadhyay, T.C. Investigation of Spontaneous Polarization and Phase Transition Phenomena in KH2PO4-Type Crystals by Green’s Function Approach. J Low Temp Phys 207, 190–209 (2022). https://doi.org/10.1007/s10909-022-02714-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10909-022-02714-y

Keywords

Navigation